quinta-feira, 30 de novembro de 2017

O eco de luz da supernova SN 2014J na galáxia Messier 82

As vozes que reverberam em montanhas e o som de rebatendo nas paredes são exemplos de um eco. O eco acontece quando as ondas sonoras ricocheteiam as superfícies e retornam ao ouvinte.

propagação do eco de luz da SN2014J na M82

© Hubble (propagação do eco de luz da SN 2014J na M82)

O espaço tem sua própria versão de um eco. Não é feito com som, mas com luz, e ocorre quando a luz são refletidas por nuvens de poeira.

O telescópio espacial Hubble acaba de captar um destes ecos cósmicos, na galáxia M82, localizada a 11,4 milhões de anos-luz de distância da Terra, na direcção da constelação da Ursa Maior.

Uma animação reunida a partir de mais de dois anos de imagens obtidas com a Advanced Camera for Surveys do Hubble, entre 6 de Novembro de 2014 e 28 de Abril de 2017, revela uma emissão de luz de uma explosão de supernova que atravessa o espaço interestelar três anos após a descoberta da explosão estelar. A luz "ecoando" parece uma ondulação se expandindo em uma lagoa. A supernova, chamada SN 2014J, foi descoberta em 21 de janeiro de 2014.

efeito do eco de luz da SN 2014J na M82

©  (efeito do eco de luz da SN 2014J na M82)

Um eco de luz ocorre porque a luz da explosão estelar viaja a diferentes distâncias para chegar à Terra. Alguma luz vem para a Terra diretamente da explosão da supernova. Outra porção da luz está atrasada porque viaja indiretamente. Neste caso, a luz está sendo desviada de uma enorme nuvem de poeira que se estende de 300 a 1.600 anos-luz em torno da supernova e está sendo refletida para a Terra.

Até agora, os astrônomos descobriram apenas 15 ecos de luz em torno de supernovas fora da nossa galáxia Via Láctea. As detecções de ecos de luz das supernovas raramente são vistas porque elas devem estar próximas para que haja resolução suficiente de um telescópio.

Fonte: Space Telescope Science Institute

Medidos os primeiros movimentos próprios de estrelas fora da Via Láctea

Graças à combinação de dados do telescópio espacial Hubble e da missão Gaia, astrônomos da Universidade de Groningen conseguiram medir o movimento próprio de quinze estrelas da Galáxia Anã do Escultor, a primeira medição do gênero para uma galáxia pequena além da Via Láctea.

Galáxia Anã do Escultor

© ESO (Galáxia Anã do Escultor)

Os resultados mostram uma preferência inesperada na direção do movimento, o que sugere que o modelo teórico padrão usado para descrever o movimento das estrelas e do halo de matéria escura em outras galáxias pode ser inválido.

Há muito que os astrônomos são capazes de medir o movimento das estrelas na nossa "linha de visão" através do desvio para o vermelho, provocado pelo efeito Doppler. No entanto, a medição do movimento no plano do céu, chamado "movimento próprio", é muito mais difícil. Para detectar este movimento são necessárias múltiplas medições muito precisas da posição de uma estrela ao longo de vários anos. Devido à imensa distância que nos separa, muitas estrelas da nossa Galáxia têm movimentos extremamente pequenos a partir do ponto de vista do céu da Terra. Para estrelas fora da nossa Galáxia, este movimento é ainda menor.

A missão Gaia da ESA, atualmente em andamento, está concebida para medir a posição exata de mais de um bilhões de estrelas, principalmente na Via Láctea. "Mas o Gaia também mede posições estelares em galáxias próximas," explica o astrônomo Davide Massari da Universidade de Groningen. "E para algumas destas estrelas, também temos a localização medida pelo telescópio espacial Hubble, há cerca de 12 anos."

Massari e colegas do Instituto Astronômico Kapteyn propuseram combinar ambos os conjuntos de dados. Esta não é uma tarefa fácil, pois ambas as missões medem a posição de maneiras diferentes. Ao usar galáxias de fundo que não mudaram de posição nos doze anos, a equipe foi capaz de combinar os dados. "Tivemos que ter muito cuidado para excluir quaisquer erros sistemáticos," comenta Massari. Mas foram bem-sucedidos e das 120 estrelas medidas, tanto pelo Hubble como pelo Gaia na Galáxia Anã do Escultor, descobriram quinze observações emparelhadas extremamente precisas.

"Em seguida, determinamos como as estrelas se movem nesta galáxia pequena, que é quantificado pelo parâmetro de anisotropia. Se alto, as estrelas têm trajetórias muito alongadas, se muito pequeno, têm órbitas circulares. Com este conhecimento conseguimos determinar as propriedades do halo de matéria escura no qual a galáxia está embebida. Mas o nosso valor medido foi muito surpreendente, não é permitido pelos modelos padrão. Isto significa que alguns dos pressupostos em que estes modelos se baseiam devem estar errados."

Uma possível explicação é que o modelo assume que todas as estrelas pertencem a uma única população. Mas nós sabemos que a Anã do Escultor é uma galáxia complexa e tem pelo menos dois componentes estelares (um mais compacto e outro mais estendido). Na verdade, existe um modelo que inclui este parâmetro e a anisotropia que Massari e colegas observaram é, de fato, por ele prevista, caso a maioria das estrelas medidas pertençam ao componente mais compacto.

O movimento das estrelas depende principalmente do halo invisível de matéria escura em torno de uma galáxia. É por isso que é tão importante determinar o parâmetro de anisotropia, pois pode ser usado para determinar a distribuição da matéria escura nesta galáxia, que por sua vez depende da natureza da própria matéria escura. "Os nossos resultados mostram que, por meio dos dados do Gaia, combinados com outros conjuntos de dados, podemos medir o movimento próprio de estrelas fora da Via Láctea e assim melhorar os modelos que descrevem a forma como a matéria escura está distribuída nestas outras galáxias."

Um segundo resultado importante é uma medição mais precisa da órbita da Galáxia Anã do Escultor em torno da Via Láctea. "Esta órbita é muito maior do que o esperado. Anteriormente, pensava-se que a atual forma esferoidal era, em parte, o resultado de algumas passagens próximas, mas as nossas medições mostram que não é o caso." Massari e a equipe do Instituto Kapteyn estão ansiosos por ampliar a sua amostra de estrelas fora da Via Láctea com movimento próprio conhecido após o novo lançamento de dados do Gaia, no início do próximo ano.

Os resultados foram publicados na revista Nature Astronomy.

Fonte: University of Groningen

quarta-feira, 29 de novembro de 2017

O mais profundo rastreio espectroscópico executado até hoje

A equipe, liderada por Roland Bacon da Universidade de Lyon (CRAL, CNRS), na França, utilizou o instrumento MUSE (Multi Unit Spectroscopic Explorer) para observar o HUDF (Hubble Ultra Deep Field), uma região do céu na constelação austral da Fornalha bastante estudada.

Hubble Ultra Deep Field

© ESO/MUSE (Hubble Ultra Deep Field)

Obtiveram-se assim as observações espectroscópicas mais profundas até hoje; foram medidas informações espectroscópicas precisas para 1.600 galáxias muito fracas, o que corresponde a dez vezes o número de galáxias que se tinham conseguido medir neste campo durante a última década, com telescópios situados no solo.

As imagens HUDF originais, publicadas em 2004, são observações de campo profundo obtidas com o telescópio espacial Hubble da NASA/ESA. Eram as mais profundas obtidas até então e revelaram uma enorme quantidade de galáxias, observadas quando o Universo tinha menos de um bilhão de anos. A região foi subsequentemente observada muitas vezes, tanto com o Hubble como com outros telescópios, resultando na imagem mais profunda do Universo obtida até então. Agora, e apesar da profundidade das observações Hubble, o MUSE conseguiu revelar 72 galáxias nunca antes observadas nesta minúscula área do céu.

Roland Bacon explica melhor: ”O MUSE consegue fazer algo que o Hubble não é capaz, ou seja, separa a luz vinda de cada ponto da imagem nas suas componentes de cor, criando um espectro. Isso permite medir distâncias, cores e outras propriedades de todas as galáxias que observamos, incluindo algumas invisíveis ao próprio Hubble!”

Os dados MUSE dão uma nova visão de galáxias muitos distantes e fracas, observadas próximo do início do Universo, há cerca de 13 bilhões de anos atrás. Este instrumento detectou galáxias 100 vezes mais fracas do que os rastreios anteriores, acrescentando assim a um campo observado já muito rico e aprofundando o nosso conhecimento das galáxias ao longo dos tempos.

O rastreio descobriu 72 candidatas a galáxias do tipo Lyman-alfa, objetos que emitem apenas em radiação Lyman-alfa. Os elétrons carregados negativamente que orbitam os núcleos carregados positivamente de um átomo, têm níveis de energia quantificados. Isto significa que apenas podem existir em estados de energia específicos e apenas podem transitar entre estes estados ganhando ou perdendo quantidades precisas de energia. A radiação de Lyman-alfa é produzida quando elétrons nos átomos de hidrogênio decaem do segundo nível de energia mais baixa para o primeiro nível de energia mais baixa. Esta quantidade de energia precisa que se perde, é liberada sob a forma de radiação com um comprimento de onda particular na região ultravioleta do espectro eletromagnético, a qual é detectada pelos astrônomos com telescópios no espaço, ou no solo, no caso de se tratarem de objetos que apresentam desvios para o vermelho. Para estes dados, com desvios para o vermelho entre 3 e 6,6, a radiação de Lyman-alfa é observada na luz visível ou infravermelha próxima.

A nossa compreensão atual da formação estelar não explica completamente este tipo de galáxias, que parecem apenas brilhar intensamente nesta cor. Uma vez que o MUSE dispersa a luz nas suas componentes de cor, estes objetos tornam-se aparentes, mas permanecem invisíveis em imagens diretas profundas, como é o caso das do Hubble.

“O MUSE tem a capacidade única de extrair informação sobre algumas das galáxias mais precoces do Universo, mesmo numa região do céu já tão bem estudada,” explica Jarle Brinchmann, da Universidade de Leiden, na Holanda, e do Instituto de Astrofísica e Ciências do Espaço, Porto, Portugal. “Usando espectroscopia podemos aprender mais sobre estas galáxias, tais como o seu conteúdo químico e movimentos internos, não para cada galáxia de cada vez, mas para todas as galáxias ao mesmo tempo!”

Outro resultado importante deste estudo foi a detecção sistemática de halos de hidrogênio luminoso em torno de galáxias do Universo primordial, o que dá aos astrônomos uma nova maneira promissora de estudar como é que o material flui para dentro e para fora das galáxias primitivas.

Numa série de artigos científicos são exploradas muitas outras aplicações potenciais desta base de dados, incluindo o papel de galáxias tênues durante a reionização cósmica (que começou apenas 380 mil anos após o Big Bang), taxas de fusão de galáxias quando o Universo era jovem, ventos galáticos, formação estelar e mapeamento dos movimentos das estrelas no Universo primordial.

“Notavelmente, estes dados foram todos obtidos sem o uso do recente melhoramento do MUSE relativo à Infraestrutura de óptica adaptativa. A ativação desta infraestrutura, após uma década de trabalho intenso por parte dos astrônomos e engenheiros do ESO, promete dados ainda mais revolucionários no futuro,” conclui Roland Bacon.

A Infraestrutura de óptica adaptativa com o MUSE revelou já anéis em torno da nebulosa planetária IC 4406, estruturas nunca antes observadas.

Este trabalho foi descrito numa série de 10 artigos científicos que estão sendo publicados num número especial da revista especializada Astronomy & Astrophysics.

Fonte: ESO

terça-feira, 28 de novembro de 2017

Raias e listras em aglomerado de galáxias

Esta vista pitoresca do telescópio espacial espacial Hubble se aproxima do Universo distante para revelar um aglomerado de galáxias chamado Abell 2537.

Abell 2537

© Hubble (Abell 2537)

Aglomerados de galáxias, como este, contêm milhares de galáxias de todas as idades, formas e tamanhos, totalizando uma massa de milhares de vezes maior que a da Via Láctea. Estes agrupamentos de galáxias são colossais, pois são as maiores estruturas do Universo para serem mantidas unidas por sua própria gravidade.

Os aglomerados de galáxias são úteis para sondar fenômenos cósmicos misteriosos como matéria escura e energia escura, o último dos quais possivelmente pode definir a geometria do Universo. Há tanta matéria preenchida no aglomerado de galáxias Abell 2537 que sua gravidade tem efeitos visíveis em seus arredores.

A gravidade de Abell 2537 liga a própria estrutura do seu ambiente (espaço-tempo), fazendo com que a luz percorra caminhos distorcidos através do espaço. Este fenômeno de lente gravitacional pode produzir um efeito de ampliação, permitindo-nos ver objetos que ficam atrás do aglomerado e, portanto, não são observáveis ​​da Terra. O Abell 2537 é uma lente particularmente eficiente, conforme demonstrado pelas listras esticadas e arcos com raias visíveis na imagem. Estas formas manchadas são de fato galáxias, sua luz fortemente distorcida pelo campo gravitacional de Abell 2537.

Esta cena espetacular foi captada pela Advanced Camera for Surveys e Wide-Field Camera 3 como parte de um programa de observação chamado RELICS (Reionization Lensing Cluster Suervey).

Fonte: ESA

segunda-feira, 27 de novembro de 2017

Estrelas estão sendo geradas em Chamaeleon I

Uma nuvem escura quando observada por telescópios ópticos, a região conhecida como Chamaeleon I, se revela como uma região muito ativa onde estrelas se formam, nesta imagem em infravermelho obtida pelo observatório espacial Herschel da ESA.

Chamaeleon I

© ESA/Herschel (Chamaeleon I)

Localizada a somente 550 anos-luz de distância da Terra, na constelação de Chamaeleon, esta é uma das áreas mais próximas da Terra, onde as estrelas estão sendo produzidas.

Lançado em 2009, o Herschel observou o céu nos comprimentos de onda do infravermelho e no submilimétrico até 2013. Sensível ao calor que emana de pequenas porções de poeira fria misturada com as nuvens de gás onde as estrelas se formam, ele forneceu uma visão sem precedentes do material interestelar que permeia a Via Láctea.

O Herschel descobriu uma vasta e intrigante rede de estruturas filamentares, em todo o canto da galáxia, confirmando que os filamentos são elementos cruciais no processo de formação de estrelas.

Depois que a rede filamentar nasce dos movimentos turbulentos do gás no material interestelar, a gravidade toma conta da situação, mas somente nos filamentos mais densos que se tornam instáveis e se fragmentam em objetos compactos, que seriam as sementes para a formação de novas estrelas.

A região Chamaeleon I não é uma exceção, com algumas estruturas alongadas atravessando a nuvem. A maior parte da atividade de formação de estrelas está acontecendo na convergência dos filamentos, na área brilhante no topo da imagem e numa região mais vasta à esquerda do centro da imagem, estas regiões mostram estrelas recém-nascidas que estão aquecendo o material ao redor.

Analisando imagens parecidas, os astrônomos identificaram mais de 200 estrelas jovens nesta nuvem que tem cerca de dois milhões de anos de existência. A maior parte das estrelas ainda estão circundadas pelo disco do material que ficou nelas depois do processo de formação; sendo que tais discos podem evoluir para a formação de planetas.

Devido ao fato de estar relativamente próxima da Terra, a Chamaeleon I é um laboratório ideal para explorar os discos protoplanetários e suas propriedades usando os dados do Herschel.

Fonte: ESA

domingo, 26 de novembro de 2017

O caso da anã branca encolhendo

Considere uma estrela parecida com o Sol, uma gigante vermelha e uma anã branca. Todas parecem bastante diferentes. Mas na verdade, uma estrela pode ser todas estas três ao longo de sua vida.

ilustração de anã branca e sua companheira

© F. Mereghetti (ilustração de anã branca e sua companheira)

Em cerca de 5 bilhões de anos, o Sol se transformará em uma gigante vermelha, inchando até alcançar a Terra. Então, cerca de um bilhão de anos depois, ela se expandirá muito longe e perderá suas camadas externas, deixando apenas seu núcleo quente e denso. Este núcleo será uma anã branca.

Muitas anãs brancas foram descobertas ao longo dos anos, mas um estudo recente apresentou a primeira evidência observacional de um anã branca se contraindo consistentemente nos últimos 2 milhões de anos.

De acordo com a teoria, uma anã branca típica pode encolher seu raio por várias centenas de quilômetros durante seu primeiro milhão de anos, mas nunca foi testemunhado este comportamento antes. "Por décadas, é teoricamente claro que anãs brancas jovens estão se contraindo," disse o astrofísico Sergei Popov, da Moscow State University.

Isto é em parte porque muitas anãs brancas observadas até agora são extremamente antigas, então acabaram de diminuir há muito tempo. Mas também é incrivelmente difícil para os astrônomos medir mudanças minúsculas no raio de uma anã branca, já que o núcleo estelar é muito distante e muito compacto. (Uma anã branca aproximadamente com massa do Sol teria o tamanho da Terra).

A estrela retraída é realmente parte de um sistema binário de raios X, o HD 49798/RX J0648.0-4418, que está localizado a cerca de 2.000 anos-luz de distância na constelação de Puppis. A equipe foi capaz de medir com precisão as mudanças na anã branca devido à singularidade do sistema binário que a anã branca estava literalmente iluminada, relativo ao acúmulo de matéria da estrela vizinha.

"Em outros sistemas semelhantes, o acréscimo é muito mais poderoso, conforme gira a anã branca torna-se impossível notar a beleza da contração," disse Popov.

A rotação da anã branca HD 49798/RX J0648.0-4418 não foi significativamente influenciada pela infaltração de gás da sua companheira. A equipe percebeu que qualquer alteração na taxa de rotação da anã branca provavelmente resultaria na mudança de tamanho.

O astrônomo Sandro Mereghetti, do Istituto Nazionale di Astrofisica em Milão, descobriu que a velocidade rotacional da anã branca não era apenas a mais rápida já observada para este remanescente, mas também acelerou nos últimos 20 anos. Ele descobriu que o período original de 13 segundos da anã branca, está diminuindo em cerca de sete nanosegundos por ano.

Embora alguns nanossegundos por ano possam não parecer muito, para um objeto tão massivo e comprimido como uma anã branca, isso corresponde a uma mudança significativa no momento angular, algo que não poderia ser realizado através da acumulação de matéria. Em vez disso, os pesquisadores demonstraram que o giro mais rápido da anã branca poderia ser facilmente explicado se a estrela estivesse se contraindo, bem como a forma como um patinador gira mais rápido quando ele fecha os braços.

Com base em cálculos evolutivos, os pesquisadores determinaram que a anã branca tem cerca de 2 milhões de anos de idade. E a teoria prevê que deveria encolher em cerca de um centímetro por ano, o que se encaixa perfeitamente com o aumento da taxa de rotação observada pela equipe.

"Graças a esta descoberta, os astrofísicos poderão estudar e avaliar os padrões de evolução de anãs brancas jovens e buscar com sucesso sistemas similares na galáxia", disse Popov.

Se os astrônomos puderem localizar outros sistemas como o HD49798/RX J0648.0-4418, eles não só aprenderão mais sobre como as anãs brancas jovens evoluem, mas também poderão explorar ainda mais a função da acreção nestes sistemas.

O estudo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Astronomy

quinta-feira, 23 de novembro de 2017

Descobrindo as origens dos halos das galáxias

Usando o telescópio Subaru no topo de Maunakea, pesquisadores identificaram 11 galáxias anãs e dois halos contendo estrelas na região externa de uma grande galáxia espiral a 25 milhões de anos-luz da Terra.

NGC 4631

© NAOJ (NGC 4631)

Os resultados fornecem uma nova visão sobre como estes “fluxos estelares de maré” se formam em torno de galáxias.

Os pesquisadores da Universidade de Tohoku e colegas usaram uma câmera de visão de campo ultra-ampla no telescópio Subaru para desenvolver uma melhor compreensão de halos estelares.

Estas coleções de estrelas em forma de anel orbitam grandes galáxias e muitas vezes podem se originar de galáxias anãs menores nas proximidades.

A equipe concentrou sua atenção na galáxia NGC 4631, também conhecida como Galáxia da Baleia devido à sua forma. Foram identificadas 11 galáxias anãs em sua região externa, algumas das quais já eram conhecidas.

As galáxias anãs não são facilmente detectadas devido aos seus pequenos tamanhos, massas e baixo brilho.

A equipe também encontrou dois fluxos estelares de maré orbitando a galáxia: um, chamado Stream SE, está localizado na frente dela e o outro, chamado Stream NW, está alinhado atrás dela.

Com base em cálculos com o objetivo de estimar o conteúdo metálico dos fluxos estelares, a equipe acredita que é possível que eles se originassem como resultado de uma interação gravitacional entre a Galáxia da Baleia e uma galáxia anã orbitando.

A equipe também descobriu que ambos os fluxos são relativamente mais fracos do que outros fluxos estelares que foram estudados em torno de galáxias próximas à Via Láctea.

O Stream NW é o mais brilhante do par e tem um núcleo mais concentrado.

Os pesquisadores levantam a hipótese de que este brilho se deve a uma galáxia anã, possivelmente incorporada dentro dela, e que esta anã teve uma interação gravitacional com a Galáxia da Baleia para formar o Stream SE.

Acredita-se que os halos estelares são menos comuns quando a massa estelar total de uma galáxia é menor do que a massa estelar de galáxias maiores, como a Galáxia do Triângulo.

Como resultado de seus cálculos, os pesquisadores acreditam que a Galáxia da Baleia, embora grande, tem uma massa menor do que a Via Láctea. No entanto, ainda está em uma fase de crescimento ativo, e assim são os halos circundantes.

Estudos futuros poderiam ajudar a esclarecer melhor como os halos estelares se formam em torno de galáxias com massas relativamente pequenas.

Os resultados da pesquisa foram publicados no periódico The Astrophysical Journal.

Fonte: National Astronomical Observatory of Japan

quarta-feira, 22 de novembro de 2017

O exoplaneta 55 Cancri e tem provavelmente uma atmosfera

Com o dobro do tamanho da Terra, é possível que a super-Terra 55 Cancri e tenha fluxos de lava à superfície.

ilustração do exoplaneta 55 Cancri e e sua estrela hospedeira

© NASA/JPL-Caltech (ilustração do exoplaneta 55 Cancri e e sua estrela hospedeira)

O exoplaneta está tão perto da sua estrela, que o mesmo lado está sempre orientado para a estrela, de modo que tem um lado permanentemente diurno e um lado permanentemente noturno. Com base num estudo de 2016 usando dados do telescópio espacial Spitzer da NASA, os cientistas especularam que a lava flui livremente em lagos no lado iluminado e torna-se dura na face em escuridão perpétua. A lava na face diurna refletiria a radiação da estrela, contribuindo para a temperatura geral observada do planeta.

Agora, uma análise mais profunda dos mesmos dados do Spitzer descobriu que este planeta provavelmente tem uma atmosfera cujos ingredientes podem ser semelhantes aos da atmosfera da Terra, mas mais espessa. De acordo com os cientistas, os lagos de lava diretamente expostos ao espaço sem uma atmosfera criariam pontos quentes de altas temperaturas, portanto não são a melhor explicação para as observações do Spitzer.

"Se houver lava neste planeta, precisará de cobrir toda a superfície. Mas a lava ficaria escondida da nossa vista pela atmosfera espessa," explica Renyu Hu, astrônomo do Jet Propulsion Laboratory (JPL) da NASA.

Usando um modelo melhorado de como a energia podia fluir em todo o planeta e irradiar de volta para o espaço, os pesquisadores acham que o lado noturno do planeta não é tão frio como se pensava anteriormente. O lado "frio" é ainda bastante quente segundo padrões terrestres, com uma média em torno de 1.300 a 1.400 ºC, e o lado quente tem em média 2.300 ºC. A diferença entre os lados quente e frio precisaria ser mais extrema caso não houvesse atmosfera.

Os cientistas têm debatido se este planeta tem uma atmosfera como a da Terra e Vênus, ou apenas um núcleo rochoso sem atmosfera, como Mercúrio.

A atmosfera deste misterioso planeta pode conter nitrogênio, água e até oxigênio, numa atmosfera com temperaturas muito mais elevadas que da Terra. A densidade do planeta é também semelhante à da Terra, sugerindo que é igualmente rochoso. No entanto, o calor intenso da estrela progenitora será demasiado para suportar vida e não consegue manter a água no estado líquido.

Hu desenvolveu um método para estudar as atmosferas e superfícies dos exoplanetas, e anteriormente apenas o tinha aplicado aos planetas borbulhantes e gigantes chamados Júpiteres quentes. Isabel Angelo, autora principal do estudo, da Universidade da Califórnia, Berkeley, trabalhou no estudo como parte do seu estágio no JPL e adaptou o modelo de Hu a 55 Cancri e.

O exoplaneta 55 Cancri e como um planeta potencialmente rico em carbono, com temperaturas e pressões tão altas que o seu interior podia conter um diamante gigante.

O Spitzer observou 55 Cancri e entre 15 e junho e 15 de julho de 2013, usando uma câmara especialmente construída para observar radiação infravermelha, que é invisível aos olhos humanos. A radiação infravermelha é um indicador de energia térmica. Ao comparar as mudanças no brilho observado pelo Spitzer com os modelos de fluxo energético, os cientistas perceberam que uma atmosfera com materiais voláteis podia melhor explicar as temperaturas.

Existem muitas perguntas em aberto sobre 55 Cancri e, especialmente: porque é que a atmosfera não foi removida do planeta, tendo em conta o perigoso ambiente de radiação da estrela?

O estudo foi publicado na revista The Astronomical Journal.

Fonte: Jet Propulsion Laboratory

terça-feira, 21 de novembro de 2017

O primeiro asteroide interestelar é diferente dos vistos no Sistema Solar

Astrônomos estudaram pela primeira vez um asteroide que entrou no Sistema Solar vindo do espaço interestelar.

ilustração do asteroide interestelar ‘Oumuamua

© ESO/M. Kornmesser (ilustração do asteroide interestelar ‘Oumuamua)

Observações feitas com o Very Large Telescope (VLT) do ESO no Chile e em outros observatórios do mundo mostram que este objeto único viajava no espaço há milhões de anos antes do seu encontro casual com o nosso Sistema Solar. O objeto parece ser vermelho escuro e extremamente alongado, metálico ou rochoso, nada parecido com o que encontramos normalmente no Sistema Solar.

Em 19 de outubro de 2017, o telescópio Pan-STARRS no Havaí captou um fraco ponto de luz deslocando-se no céu. Inicialmente parecia ser um pequeno asteroide rápido comum, no entanto observações adicionais nos dias seguintes permitiram calcular a sua órbita de modo bastante preciso, o que revelou, sem sombra de dúvidas, que se tratava de um objeto que não vinha do interior do Sistema Solar, como todos os outros asteroides ou cometas observados até hoje, mas sim do espaço interestelar. Embora classificado originalmente como cometa, observações obtidas pelo ESO e por outros observatórios não revelaram sinais de atividade cometária após a sua passagem próxima ao Sol em Setembro de 2017. O objeto foi por isso reclassificado como sendo um asteroide interestelar e chamado 1I/2017 U1 (‘Oumuamua).

O VLT foi utilizado para medir a órbita do objeto, sua cor e seu brilho com mais precisão do que a obtida por telescópios menores. A rapidez nesta ação era crucial, uma vez que o ‘Oumuamua desaparecia rapidamente no céu, afastando-se do Sol e da Terra, no seu percurso para fora do Sistema Solar. Mas o objeto ainda reservava algumas surpresas.

Combinando as imagens do instrumento FORS montado no VLT com as imagens obtidas por outros grandes telescópios, a equipe de astrônomos liderada por Karen Meech (Institute for Astronomy, Havaí, EUA) descobriu que o ‘Oumuamua varia em brilho de um fator 10, à medida que gira em torno do seu eixo a cada 7,3 horas.

“Esta variação em brilho estranhamente elevada revela que o objeto é extremamente alongado: cerca de 10 vezes mais comprido do que largo, com uma forma complexa. Foi descoberto também que apresenta uma cor vermelha escura, semelhante aos objetos no Sistema Solar externo, e é completamente inerte, sem o menor traço de poeira ao seu redor,” disse Karen Meech.

Estas propriedades sugerem que o ‘Oumuamua é denso, possivelmente rochoso ou com um conteúdo metálico elevado, sem quantidades significativas de água ou gelo, e que a sua superfície é escura e vermelha devido aos efeitos de irradiação por parte de raios cósmicos ao longo de muitos milhões de anos. Estima-se que tenha pelo menos 400 metros de comprimento.

Cálculos preliminares da sua órbita sugerem que o objeto tenha vindo da direção aproximada da estrela brilhante Vega, na constelação boreal da Lira. No entanto, mesmo viajando à tremenda velocidade de cerca de 95.000 km/hora, demorou tanto tempo a chegar ao nosso Sistema Solar, que Vega não se encontra já na posição que ocupava quando o asteroide partiu de lá, há cerca de 300 mil anos atrás. O ‘Oumuamua deve ter vagado pela Via Láctea, sem ligação a nenhum sistema estelar, durante centenas de milhões de anos até seu encontro casual com o Sistema Solar.

Os astrônomos estimam que, por ano, um asteroide interestelar semelhante ao ‘Oumuamua passe através do Sistema Solar interior, no entanto como estes objetos são fracos e difíceis de detectar nunca foram observados até agora. Apenas recentemente é que os telescópios de rastreio, como o Pan-STARRS, se tornaram suficientemente poderosos para conseguirem detectar tais objetos.

Estes novos resultados foram publicados na revista Nature.

Fonte: ESO

segunda-feira, 20 de novembro de 2017

Cobra cósmica abundante de estrelas

Esta imagem do telescópio espacial Hubble revela a Serpente Cósmica, uma galáxia distante salpicada de regiões agudas de intensa formação estelar que aparecem deformadas pelo efeito da lente gravitacional.

galáxia Serpente Cósmica

© Hubble (galáxia Serpente Cósmica)

Esta galáxia com aparência de arco gigante está realmente atrás do enorme aglomerado de galáxias MACSJ1206.2-0847, mas graças à gravidade do aglomerado, podemos vê-la da Terra.

A luz da galáxia distante e de alto redshift (desvio para o vermelho) chega à Terra, tendo sido distorcida pela gigantesca influência gravitacional do aglomerado interativo. Fascinantemente, em vez de dificultar a percepção de objetos cosmológicos, tal efeito de lente gravitacional melhora a resolução e a profundidade de uma imagem ampliando o objeto em segundo plano. Às vezes, a lente gravitacional pode até produzir múltiplas imagens do objeto à medida que a luz é dobrada em diferentes direções ao redor do aglomerado em primeiro plano.

Usando o telescópio espacial Hubble, os astrônomos examinaram recentemente várias destas imagens da Serpente Cósmica, cada uma com um nível diferente de ampliação. Usando esta técnica, a galáxia e suas características podem ser estudadas em diferentes escalas. As imagens de alta resolução revelaram que os aglomerados de galáxias gigantes de alto deslocamento para o vermelho são constituídos por uma subestrutura complexa de aglomerados pequenos, o que contribui para a nossa compreensão da formação de estrelas em galáxias distantes.

Fonte: ESA

sábado, 18 de novembro de 2017

Pulsares podem revelar ondas gravitacionais de nanohertz

A evidência de ondas gravitacionais a partir de buracos negros supermassivos binários poderia ser detectada em anomalias de frequência em pulsares nos próximos 10 anos, de acordo com pesquisadores da Alemanha, do Reino Unido e dos EUA.

NGC 3115

© Chandra/VLT (NGC 3115)

Distorções no espaço-tempo causadas pela passagem de ondas gravitacionais devem alterar temporariamente a distância entre a Terra e certos pulsares altamente regulares, afetando os períodos dos pulsos de rádio recebidos.

A recente observação de ondas gravitacionais pelos experimentos LIGO e Virgo representa um dos mais importantes avanços astronômicos das últimas décadas. Mas, embora não exista mais o potencial deste novo olho no cosmos, existem algumas fontes de ondas gravitacionais às quais a técnica será sempre cega.

Os interferômetros a laser terrestres, como LIGO e Virgo, são sensíveis a frequências de ondas gravitacionais entre 10 Hz e 10 kHz, uma faixa que corresponde aproximadamente ao espectro auditivo humano. Algumas fontes astronômicas produzem sinais muito abaixo da parte inferior deste intervalo. Quando duas galáxias colidem e se fundem, por exemplo, os buracos negros gigantes em seus respectivos centros podem acabar orbitando um ao outro como um binário de buraco negro supermassivo (SMBHB). Mesmo que os objetos sejam destinados, em última instância, a coalescer, estas relações podem durar bilhões de anos, com ondas gravitacionais emitidas continuamente em frequências tão baixas quanto 1 nHz (nanohertz).

Escrevendo na Nature Astronomy, Chiara Mingarelli do Max Planck Institute for Radio Technology, na Alemanha, e do Instituto de Tecnologia da Califórnia nos EUA, calculou a probabilidade de que tal SMBHB fosse detectado contra a onda gravitacional de fundo com uma variedade de condições possíveis. O grupo baseou sua análise em um catálogo de mais de cinco mil galáxias "locais" adequadamente identificadas pela Two Micron All-Sky Survey (neste contexto, "local" significa cerca de 730 milhões de anos-luz da Terra). Os pesquisadores então usaram os resultados de simulações cosmológicas realizadas pelo projeto Illustris para estimar que cerca de 100 destas galáxias provavelmente conterão SMBHBs.

Atualmente as medições de tempo disponíveis em pulsares foram suficientes para revelar ondas gravitacionais em menos de 1% de simulações probabilísticas com base nestas fontes locais, o que ajuda a explicar a falta de resultados positivos obtidos até o momento. Projetando a adição de dezenas de novos pulsares ao conjunto de temporização durante a próxima década e assumindo que a onda gravitacional de fundo possa ser subtraída, os pesquisadores descobriram que as ondas gravitacionais contínuas de pelo menos um SMBHB poderiam ser detectadas nos próximos 10 anos.

Fonte: Max Planck Institute for Radio Technology

A Nebulosa da Tarântula

A Nebulosa da Tarântula tem mais de mil anos-luz de diâmetro, uma gigantesca região de formação estelar dentro da vizinha galáxia satélite, a Grande Nuvem de Magalhães, que está localizada a cerca de 180 mil anos-luz de distância da Terra.

Nebulosa da Tarântula

© Ignacio Diaz Bobillo (Nebulosa da Tarântula)

A Nebulosa da Tarântula é a maior e mais violenta região de criação de estrelas conhecida dentro do Grupo Local de galáxias. O aracnídeo cósmico se espalha através desta vista espetacular composta por dados de banda estreita centrados na emissão de átomos de hidrogênio ionizado e oxigênio.

Dentro da Nebulosa Tarântula (NGC 2070), a radiação intensa, os ventos estelares e as ondas choques oriundas de supernovas originadas no aglomerado de estrelas massivo, catalogado como R136, energizam os gases desta nebulosa brilhante e moldam os filamentos da aranha cósmica.

Em torno da nebulosa da Tarântula estão outras regiões formadoras de estrelas como aglomerados de estrelas jovens, filamentos e nuvens em forma de bolhas. O panorama cósmico inclui o local da supernova mais próxima nos tempos modernos, a SN 1987A, a direita do centro.

O rico campo de visão abrange cerca de 1 grau ou 2 Luas cheias, na direção da constelação meridional do Dorado. Mas se a Nebulosa da Tarântula se aproximasse, digamos 1.500 anos-luz de distância como a estrela local formando a Nebulosa de Órion, ocuparia a metade do céu.

Fonte: NASA

LIGO e Virgo detectam mais outra fusão de buracos negros

Os cientistas que procuram ondas gravitacionais confirmaram mais uma detecção da sua profícua observação.

buracos negros descobertos através de ondas gravitacionais

© LIGO/Caltech (buracos negros descobertos através de ondas gravitacionais)

Denominada GW170608, a descoberta mais recente foi produzida pela fusão de dois buracos negros relativamente leves, 7 e 12 vezes a massa do Sol, a uma distância de aproximadamente um bilhão de anos-luz da Terra. A fusão deixou um buraco negro final com 18 vezes a massa do Sol, o que significa que durante a colisão o equivalente energético a cerca de uma massa solar foi emitido sob a forma de ondas gravitacionais.

Este evento, detectado pelos dois instrumentos LIGO do NSF às 02:01:16 UTC do dia 8 de junho de 2017, foi na realidade a segunda fusão de um buraco negro binário descoberta durante a segunda observação do LIGO desde que este foi atualizado durante o programa Advanced LIGO. Mas a sua divulgação foi adiada devido ao tempo necessário para compreender outras duas descobertas: uma observação com os três detectores LIGO-Virgo, de ondas gravitacionais, de outra fusão de um buraco negro binário (GW170814) no dia 14 de agosto, e a primeira detecção da fusão de uma estrela de nêutrons binária (GW170817), na radiação eletromagnética e em ondas gravitacionais de dia 17 de agosto.

Um mês antes desta detecção, o LIGO fez uma pausa na sua segunda campanha de observação para abrir os sistemas de vácuo em ambos os complexos e assim realizar manutenção. Enquanto os pesquisadores do LIGO em Livingston, no estado norte-americano do Louisiana, completavam a sua manutenção e ficavam prontos para retomar as suas observações cerca de duas semanas depois, o LIGO em Hanford, no estado norte-americano de Washington, encontrou problemas adicionais que atrasaram o seu regresso à observação.

Na tarde de dia 7 de junho, o LIGO em Hanford finalmente conseguiu ficar online de forma confiável e os colaboradores estavam fazendo os preparativos finais para mais uma vez "ouvir" as ondas gravitacionais. Como parte destas preparações, a equipe de Hanford estava fazendo ajustes de rotina para reduzir o nível de ruído nos dados das ondas gravitacionais provocadas pelo movimento angular dos espelhos principais. Para esclarecer o quanto este movimento angular afetava os dados, os cientistas sacudiram os espelhos muito ligeiramente em frequências específicas. Alguns minutos após este procedimento, o GW170608 passou através do interferômetro de Hanford, chegando ao de Louisiana cerca de 7 milissegundos depois.

O LIGO em Livingston relatou rapidamente a possível detecção, mas dado que o detector em Hanford estava em manutenção, o seu sistema automático de detecção não estava ligado. Apesar do procedimento de manutenção ter afetado a capacidade do LIGO em Hanford para analisar automaticamente os dados recebidos, não impediu com que o LIGO em Hanford detectasse ondas gravitacionais. O procedimento afetou apenas uma estreita faixa de frequências, de modo que os pesquisadores do LIGO, depois de terem sabido da detecção, ainda puderam procurar e encontrar as ondas nos dados depois de excluir estas frequências. Para esta deteção, o Virgo ainda estava numa fase de comissionamento; começou a captar dados no dia 1 de agosto.

O GW170608 é o mais leve dos buracos negros binários que o LIGO e o Virgo já observaram, e também é um dos primeiros casos em que os buracos negros detectados através de ondas gravitacionais possuem massas parecidas com as dos buracos negros detectados indiretamente via radiação eletromagnética, como por exemplo em raios X.

Esta descoberta permitirá comparar as propriedades dos buracos negros recolhidas a partir das observações de ondas gravitacionais com aquelas dos buracos negros de massa semelhante anteriormente detectados com estudos de raios X, e preenche um elo perdido entre as duas classes de observações de buracos negros.

Os detectores LIGO e Virgo estão atualmente offline para atualizações adicionais a fim de melhorar a sua sensibilidade. Os cientistas esperam começar uma nova campanha de observações no outono de 2018, embora existam testes ocasionais durante os quais podem ocorrer detecções.

Os cientistas do LIGO e do Virgo continuam estudando os dados da campanha de observação O2 já terminada, à procura de outros eventos possivelmente presentes nos dados recolhidos, e estão se preparando para a maior sensibilidade esperada da campanha de observação O3 do próximo ano.

Apesar do tamanho relativamente pequeno, os buracos negros de GW170608 vão contribuir muito para elucidar mais sobre estes objetos exóticos e misteriosos.

O artigo que descreve esta observação recente foi submetida ao periódico The Astrophysical Journal Letters.

Fonte: California Institute of Technology

Neblina de hidrocarbonetos de Plutão mantém planeta anão mais frio

A composição gasosa da atmosfera de um planeta geralmente determina a quantidade de calor que fica aí preso. No entanto, para o planeta anão Plutão, a temperatura prevista com base na composição da sua atmosfera era muito maior do que as medições reais obtidas pela sonda New Horizons da NASA em 2015.

camada de neblina de Plutão

© NASA/JHUAPL/SwRI (camada de neblina de Plutão)

Um novo estudo propõe um novo mecanismo de arrefecimento controlado por partículas de neblina para explicar a atmosfera frígida de Plutão.

"Tem sido um mistério desde que obtivemos os dados de temperatura da New Horizons," afirma Xi Zhang, professor assistente de Ciências da Terra e Planetárias da Universidade da Califórnia em Santa Cruz, EUA. "Plutão é o primeiro corpo planetário que conhecemos onde o 'orçamento' energético da atmosfera é dominado por partículas de neblina em fase sólida, em vez de gases."

O mecanismo de arrefecimento envolve a absorção de calor pelas partículas de neblina, que então emitem radiação infravermelha, arrefecendo a atmosfera através de liberação de energia para o espaço. O resultado é uma temperatura atmosférica de aproximadamente 70 Kelvin (-203º C), em vez dos 100 K previstos (-173º C).

Segundo Zhang, o excesso de radiação infravermelha das partículas de neblina na atmosfera de Plutão deve ser detectável pelo telescópio espacial James Webb, permitindo a confirmação da hipótese da equipe após o lançamento planejado do telescópio em 2019.

As extensas camadas de neblina atmosférica podem ser vistas em imagens de Plutão captadas pela New Horizons. A neblina resulta de reações químicas na atmosfera superior, onde a radiação ultravioleta do Sol ioniza o nitrogênio e o metano, que reagem para formar pequenas partículas de hidrocarbonetos com dezenas de nanômetros em diâmetro. À medida que estas minúsculas partículas penetram através da atmosfera, colam-se para formar agregados que crescem à medida que descem, eventualmente assentando à superfície.

"Acreditamos que estas partículas de hidrocarbonetos estão relacionadas com o material avermelhado e acastanhado visto em imagens da superfície de Plutão," acrescenta Zhang.

Os pesquisadores estão interessados em estudar os efeitos das partículas de neblina no balanço energético e atmosférico em outros corpos planetários, como na lua de Netuno, Tritão, e na lua de Saturno, Titã. Os seus achados também podem ser relevantes para investigações de exoplanetas com atmosferas nubladas.

O novo estudo foi publicado na revista Nature.

Fonte: University of California

quinta-feira, 16 de novembro de 2017

NGC 7789: a Rosa da Caroline

Encontrado entre os ricos campos estelares da Via Láctea, o aglomerado de estrelas NGC 7789 fica a cerca de 8 mil anos-luz de distância da Terra em direção à constelação Cassiopeia.

NGC 7789

© Guillaume Seigneure (NGC 7789)

Uma descoberta do céu profundo do final do século 18 pela astrônoma Caroline Lucretia Herschel, o aglomerado também é conhecido como Rosa de Caroline. Sua aparência visual florida em pequenos telescópios é criada pelo agrupamento de estrelas e vazios do aglomerado.

O aglomerado de estrelas aberto possui uma idade estimada em 1,6 bilhões de anos. Todas as estrelas no aglomerado provavelmente nasceram ao mesmo tempo, mas as mais brilhantes e mais massivas mais rapidamente esgotaram o combustível de hidrogênio em seus núcleos.

Estas estrelas evoluíram a partir da sequência principal como o Sol para se tornarem estrelas gigantes vermelhas mostradas com um elenco amarelado nesta imagem colorida. Analisando a cor e o brilho, os astrônomos podem modelar a massa e, portanto, a idade das estrelas do aglomerado. Com mais de 50 anos-luz, a Rosa de Caroline cobre cerca de meio grau (o tamanho angular da Lua) perto do centro da imagem telescópica de campo largo.

Fonte: NASA

quarta-feira, 15 de novembro de 2017

Herschel descobre fusão de galáxias no Universo primordial

Novas observações com o ALMA (Atacama Large Millimeter/submillimeter Array) descobriram o nunca antes visto encontro próximo entre duas galáxias surpreendentemente brilhantes e espetacularmente massivas no Universo primordial.

ilustração de galáxias começando o processo de fusão

© NRAO (ilustração de galáxias começando o processo de fusão)

Estas galáxias com intensa formação estelar e hiperluminosas são extremamente raras nesta época da história cósmica - perto do momento em que as galáxias começaram a surgir - e podem representar um dos exemplos mais extremos de formação estelar violenta já observados.

Os astrônomos captaram estas duas galáxias em interação, conhecidas coletivamente como ADFS-27, quando começaram o processo gradual de fusão numa única galáxia elíptica e massiva. Um encontro anterior, de "raspão", ajudou a desencadear as suas explosões surpreendentes de formação estelar. Especula-se que esta fusão pode eventualmente formar o núcleo de um aglomerado inteiro de galáxias. Os aglomerados galácticos estão entre as estruturas mais massivas do Universo.

O par de galáxias ADFS-27 está localizado a aproximadamente 12,7 bilhões de anos-luz da Terra na direção da constelação de Dourado. A esta distância, o sistema é visto quando o Universo tinha apenas cerca de um biilhão de anos.

Os astrônomos detectaram este sistema primeiro com o observatório espacial Herschel da ESA. Aparecia como um único ponto vermelho no seu levantamento do céu do hemisfério sul. Estas observações iniciais sugeriram que o objeto aparentemente fraco era extremamente brilhante e distante. As observações de acompanhamento com o telescópio APEX (Atacama Pathfinder Experiment) do ESO confirmaram estas interpretações iniciais e prepararam o caminho para as mais detalhadas observações com as antenas ALMA.

Com a sua maior resolução e sensibilidade, o ALMA mediu com precisão a distância ao objeto e revelou que era na verdade duas galáxias distintas. O emparelhamento de galáxias de outra forma fenomenalmente raras sugere que residem numa região particularmente densa do Universo naquele período da sua história.

As novas observações ALMA também indicam que o sistema ADFS-27 possui aproximadamente 50 vezes a quantidade de gás de formação estelar da Via Láctea. Muito deste gás será convertido em novas estrelas muito rapidamente. As observações atuais indicam que estas duas galáxias realmente produzem estrelas a um ritmo vertiginoso, cerca de mil vezes mais depressa que a Via Láctea.

As galáxias - que apareceriam como discos planos e em rotação - estão repletas de estrelas azuis extremamente brilhantes e massivas. No entanto, a maioria desta intensa luz estelar nunca sai das próprias galáxias; simplesmente têm demasiada poeira interestelar obscurante.

Esta poeira absorve a resplandecente luz estelar, aquecendo até que brilha intensamente no infravermelho. À medida que esta luz viaja as vastas distâncias cósmicas até à Terra, a expansão contínua do Universo desloca a luz, outrora infravermelha, para comprimentos de onda mais longos no milímetro e submilímetro, devido ao efeito Doppler.

O ALMA foi especialmente concebido para detectar e estudar a luz desta natureza, o que permitiu aos astrônomos observar a fonte de luz em dois objetos distintos. As observações também mostram as estruturas básicas das galáxias, revelando características semelhantes a caudas que foram produzidas durante o seu encontro inicial.

As novas observações também indicam que as duas galáxias estão separadas por mais ou menos 30.000 anos-luz, movendo-se a várias centenas de quilômetros por segundo em relação uma à outra. À medida que continuam a interagir gravitacionalmente, cada galáxia acabará por abrandar e cair em direção da outra, provavelmente levando a vários outros encontros íntimos antes de se fundirem numa única galáxia elíptica e massiva. Este processo poderá demorar algumas centenas de milhões de anos.

Eventualmente, será possível combinar os requintados dados do ALMA com futuras observações infravermelhas do telescópio espacial James Webb da NASA. Estes dois telescópios possibilitarão melhor compreender a natureza deste e de outros sistemas extremos e excepcionalmente raros.

Um artigo foi publicado na revista The Astrophysical Journal.

Fonte: National Radio Astronomy Observatory

Descoberto exoplaneta com a massa da Terra ao redor da estrela Ross 128

Foi descoberto um exoplaneta temperado do tamanho da Terra a apenas 11 anos-luz de distância do Sistema Solar.

ilustração do exoplaneta Ross 128 b em torno de sua estrela

© ESO/M. Kornmesser (ilustração do exoplaneta Ross 128 b em torno de sua estrela)

O novo mundo, designado por Ross 128 b, é o segundo planeta temperado mais próximo a ser detectado depois de Proxima b. Trata-se também do planeta mais próximo a ser descoberto em torno de uma estrela anã vermelha inativa, o que aumenta a probabilidade deste planeta poder potencialmente sustentar vida. O Ross 128 b será o alvo principal do Extremely Large Telescope (ELT) do ESO, o qual terá a capacidade de procurar marcadores biológicos na atmosfera do planeta.

O exoplaneta Ross 128 b, que orbita a estrela anã vermelha Ross 128 a cada 9,9 dias, foi descoberto com o auxílio do instrumento HARPS (High Accuracy Radial velocity Planet Searcher), o caçador de planetas único do ESO, instalado no Observatório de La Silla, no Chile. Acredita-se que este exoplaneta seja temperado, com uma temperatura superficial que poderá também ser parecida com a da Terra. A estrela Ross 128 é a estrela próxima “mais calma” que abriga um exoplaneta temperado.

“Esta descoberta baseia-se em mais de uma década de monitoramento intenso por parte do HARPS, juntamente com técnicas de redução e análise de dados de vanguarda. Só o HARPS tem demonstrado uma tal precisão, permanecendo o melhor instrumento de velocidades radiais, mesmo após 15 anos de operações,” diz Nicola Astudillo-Defru, do Observatório de Genebra, na Suíça.

As anãs vermelhas encontram-se entre as estrelas mais frias e fracas do Universo, sendo também as mais comuns. São, por isso, bons alvos para a procura de exoplanetas, sendo cada vez mais estudadas. Um planeta numa órbita próxima de uma estrela anã vermelha de pequena massa exerce um maior efeito gravitacional sobre a estrela do que um planeta semelhante situado numa órbita mais afastada de uma estrela mais massiva como o Sol. O resultado é que esta velocidade radial é muito mais fácil de detectar. No entanto, o fato das anãs vermelhas serem mais tênues, torna mais difícil colectar sinal suficiente para fazer as medições muito precisas que são necessárias.

Muitas estrelas anãs vermelhas, incluindo Proxima Centauri, ejetam ocasionalmente plumas de material que banham os planetas que se encontram em seu órbita com radiação ultravioleta e raios X. No entanto, Ross 128 é uma estrela muito mais calma e, por isso, os seus planetas podem ser os mais próximos conhecidos que poderão sustentar vida de modo confortável.

Apesar de se situar atualmente a 11 anos-luz de distância da Terra, Ross 128 move-se na nossa direção, esperando-se que seja a nossa vizinha mais próxima daqui a apenas 79.000 anos, um piscar de olhos em termos cósmicos. Nesse momento, Ross 128 b destronará Proxima b, tornando-se o exoplaneta mais próximo da Terra!

Com dados do HARPS, a equipe descobriu que Ross 128 b se encontra numa órbita 20 vezes mais próxima da sua estrela do que a Terra do Sol. Apesar da proximidade, Ross 128 b recebe apenas 1,38 vezes mais luz do que a Terra, o que resulta numa temperatura de equilíbrio estimada entre -60º C e 20º C, graças à natureza fria e tênue da sua pequena estrela anã vermelha progenitora, que apresenta apenas cerca de metade da temperatura de superfície do Sol. Embora os cientistas envolvidos na descoberta considerem Ross 128 b um planeta temperado, não se sabe se ele se situa no interior, no exterior ou na periferia da zona habitável, onde pode existir água líquida na superfície do planeta. A zona habitável é definida pelo domínio de órbitas em torno de uma estrela, nas quais um planeta pode ter uma temperatura apropriada para que possa existir água líquida à sua superfície.

Os astrônomos estão detectando cada vez mais exoplanetas temperados, sendo que a próxima fase será estudar as suas atmosferas, composições e química com mais detalhe. A detecção de marcadores biológicos, como por exemplo o oxigênio, nas atmosferas dos planetas mais próximos, constituirá um enorme passo em frente.

“Novas infraestruturas no ESO desempenharão um papel crucial na construção de um censo de planetas com a massa da Terra favoráveis a serem caracterizados. Em particular, o NIRPS, o braço infravermelho do HARPS, aumentará a eficiência na observação de anãs vermelhas, as quais emitem a maior parte da sua radiação no infravermelho. Por fim, o ELT proporcionará a oportunidade de observar e caracterizar uma grande fração destes planetas,” conclui Xavier Bonfils, do Institut de Planétologie et d'Astrophysique de Grenoble, na França.

Este trabalho será publicado na revista especializada Astronomy & Astrophysics.

Fonte: ESO

segunda-feira, 13 de novembro de 2017

Uma bolha cósmica gigante

Com uma dimensão de mais de 300.000 anos-luz, ou seja três vezes o diâmetro da Via Láctea, esta bolha colorida de gás ionizado (em azul na imagem) é a maior já descoberta.

COSMOS-Gr30

© ESO/VLT (COSMOS-Gr30)

A enorme bolha contém 10 galáxias individuais e situa-se na região particularmente densa de um grupo de galáxias chamado COSMOS-Gr30, a 6,5 bilhões de anos-luz de distância da Terra. Observado devido à sua elevada densidade de galáxias, este grupo apresenta-se extremamente variado, algumas galáxias estão formando estrelas de forma ativa, enquanto outras se encontram bastante passivas; umas são brilhantes e outras fracas; umas são massivas e outras são minúsculas.

Esta bolha detentora de recorde foi descoberta e estudada em detalhe graças à grande sensibilidade do instrumento MUSE, montado no Very Large Telescope (VLT) do ESO. Operando nos comprimentos de onda do visível, o MUSE combina as capacidades de um instrumento de imagens com as capacidades de medida de um espectrógrafo, criando uma ferramenta única e poderosa capaz de nos mostrar objetos cosmológicos, que, de outro modo, seriam impossíveis de observar.

O poderoso olho do MUSE permitiu aos astrônomos compreender que esta enorme bolha de gás não é pura, tendo sido expelida por galáxias, ou durante interações violentas ou por ventos fortes lançados por buracos negros ativos ou supernovas. Os astrônomos estudaram também como é que o gás da bolha se ionizou. Acredita-se que o gás existente na região superior foi ionizado devido à intensa radiação eletromagnética emitida por estrelas recém nascidas e ondas de choque com origem em atividade galática. Os astrônomos suspeitam que o núcleo ativo de galáxia de cor rosa forte, situado na parte inferior esquerda da imagem, possa ter arrancado os elétrons dos seus átomos.

Fonte: ESO

Pesquisa cósmica de um membro faltante

Esta imagem tomada pelo telescópio espacial Hubble mostra a galáxia anã NGC 4625, localizada a cerca de 30 milhões de anos-luz de distância na constelação de Canes Venatici (os Cães de Caça).

NGC 4625

© Hubble (NGC 4625)

A imagem, adquirida com o Advanced Camera for Surveys (ACS), revela o único braço espiral da galáxia, o que lhe confere uma aparência assimétrica. Mas por que há apenas um braço espiral, quando galáxias espirais normalmente têm pelo menos dois?

Os astrônomos olharam para a NGC 4625 em diferentes comprimentos de onda na esperança de resolver este mistério cósmico. As observações no ultravioleta forneceram a primeira sugestão: na luz ultravioleta, o disco da galáxia aparece quatro vezes maior do que na imagem aqui descrita. Uma indicação de que há um grande número de estrelas muito jovens e quentes, principalmente visíveis no ultravioleta, formando-se nas regiões externas da galáxia. Estas estrelas jovens têm apenas cerca de um bilhão de anos, aproximadamente dez vezes mais novas do que as estrelas vistas no centro visível. Em primeiro lugar, os astrônomos assumiram que esta alta taxa de formação de estrelas estava sendo desencadeada pela interação com outra galáxia anão próxima chamada NGC 4618.

Especula-se que a NGC 4618 pode ser a galáxia influenciadora da NGC 4625, fazendo com que ela tenha apenas um braço espiral. Em 2004, os astrônomos encontraram prova desta afirmação: o gás nas regiões ultraperiféricas da galáxia anã NGC 4618 foi fortemente afetado pela NGC 4625.

Fonte: ESA

domingo, 12 de novembro de 2017

Filamentos triangulares na Nebulosa do Véu

Caóticos na aparência, estes filamentos entrelaçados de gás brilhante se espalham pelo céu do planeta Terra na constelação de Cygnus e fazem parte da Nebulosa do Véu.

Nebulosa do Véu

© Sara Wager (Nebulosa do Véu)

A Nebulosa do Véu, é uma grande remanescente de supernova, uma nuvem em expansão que nasceu da morte explosiva de uma estrela massiva. A luz da explosão original da supernova provavelmente atingiu a Terra, a mais de 5.000 anos atrás. Expelida no evento cataclísmico, as ondas de choque interestelares viajam pelo espaço, varrendo e excitando o material que encontra pela frente.

Os filamentos brilhantes são realmente mais parecidos com longas ondulações quando vistas de lado, e onde se pode notar a separação do brilho dos átomos ionizados de hidrogênio, mostrados em vermelho e de oxigênio em azul. Também conhecido como o Laço de Cygnus, a Nebulosa do Véu se espalha por aproximadamente 3 graus, ou seja, cerca de 6 vezes o diâmetro aparente da Lua Cheia. Na distância estimada da nebulosa de 1.500 anos-luz, isso equivale a 70 anos-luz, cujo campo de visão se espalha por menos de um terço desta distância.

Normalmente identificada como Triângulo de Pickering, em homenagem ao diretor do Harvard College Observatory, o complexo de filamentos é catalogado como NGC 6979. Ele também é conhecido com o nome que homenageia a sua descoberta, que foi feita pela astrônoma Williamina Fleming, como Filamentos Triangulares de Fleming.

Fonte: NASA

sexta-feira, 10 de novembro de 2017

Estrela explodiu, sobreviveu, e explodiu novamente um século depois

Uma equipe internacional de astrônomos descobriu uma estrela que explodiu várias vezes ao longo de um período de 50 anos.

ilustração de uma supernova

© NASA/ESA/G. Bacon (ilustração de uma supernova)

A descoberta confunde completamente o conhecimento existente sobre o fim da vida de uma estrela, e a construção de um instrumento desempenhou um papel crucial na análise do fenômeno.

Em setembro de 2014, a equipe de astrônomos da iPTF (intermediate Palomar Transient Factory) detectou uma nova explosão no céu, a que deram o nome iPTF14hls.

A luz emitida pelo evento foi analisada para entender a velocidade e composição química do material ejetado na explosão.

Esta análise indicou que a explosão era o que se chama de supernova do tipo II-P, e tudo sobre a descoberta parecia normal. Até, isto é, alguns meses mais tarde quando a supernova começou novamente a ficar mais brilhante.

As supernovas do tipo II-P geralmente permanecem brilhantes cerca de 100 dias. Mas iPTF14hls permaneceu brilhante por mais de 600 dias! Além disso, os dados de arquivo revelaram uma explosão em 1954 no mesmo local exato.

Descobriu-se que, de alguma forma, esta estrela explodiu há mais de meio século, sobreviveu e explodiu novamente em 2014.

Um instrumento construído por Nick Konidaris, do Instituto Carnegie, foi fundamental para analisar a luz emitida por iPTF14hls, que diminuiu e aumentou pelo menos cinco vezes ao longo de três anos.

Com o nome "SED Machine", a ferramenta de Konidaris é capaz de classificar rapidamente supernovas e outros eventos astronômicos de curta duração. Uma rápida reviravolta na classificação destes tipos de astros chamados objetos transientes no céu era extremamente necessária quando Konidaris e antigos colegas do Caltech construíram a máquina.

As explosões estelares dizem muito acerca das origens de grande parte do material que compõe o nosso Universo. Uma explosão de supernova pode até ter desencadeado a formação do nosso próprio Sistema Solar.

"Mas há não muito tempo atrás, era mais rápido identificar fenômenos celestes de curta duração do que classificá-los e determinar o que poderiam ensinar-nos," explica Konidaris. "É por isso que construímos o SED, mas nunca esperei que nos ajudasse a analisar uma explosão tão estranha quanto esta 'estrela zombie'."

A descoberta foi publicada na revista Nature.

Fonte: W. M. Keck Observatory

Gigante vermelha dá vislumbre surpreendente do futuro do Sol

Uma equipe de astrônomos liderada por Wouter Vlemmings, da Universidade de Tecnologia de Chalmers, na Suécia, usou o ALMA (Atacama Large Millimetre/Submillimetre Array) para obter as mais detalhadas observações, até agora, de uma estrela com a mesma massa inicial que o Sol.

estrela gigante vermelha W Hydrae

© ALMA/W. Vlemmings (estrela gigante vermelha W Hydrae)

As novas imagens mostram pela primeira vez detalhes à superfície da gigante vermelha W Hydrae, a 320 anos-luz de distância na direção da constelação da Hidra.

A W Hydrae é um exemplo de uma estrela AGB (Asymptotic Giant Branch). Estas estrelas são frias, brilhantes, velhas e perdem massa através de ventos estelares. O nome deriva da sua posição no famoso diagrama Hertzsprung-Russell, que classifica as estrelas consoante o seu brilho e temperatura.

"Para nós, é importante estudar não apenas o aspeto das gigantes vermelhas, mas como mudam e como semeiam a Galáxia com os elementos que são os ingredientes da vida. Usando as antenas do ALMA na sua configuração de maior resolução, podemos agora fazer as observações mais detalhadas destas estrelas frias e excitantes," comenta Wouter Vlemmings.

As estrelas como o Sol evoluem ao longo de escalas de tempo de bilhões de anos. Quando atingem a velhice, incham e ficam maiores, mais frias e são mais propensas a perder massa sob a forma de ventos estelares. As estrelas fabricam elementos importantes como o carbono e nitrogênio. Quando atingem a fase de gigante vermelha, estes elementos são lançados para o espaço, prontos a serem usados em gerações subsequentes de novas estrelas.

As imagens do ALMA fornecem a visão mais nítida, até agora, da superfície de uma gigante vermelha com uma massa parecida à do Sol. As imagens anteriores já tinham mostrado detalhes em estrelas supergigantes vermelhas muito mais massivas como Betelgeuse e Antares.

A presença de uma mancha inesperadamente compacta e brilhante fornece evidências de que a estrela tem gás surpreendentemente quente numa camada acima da superfície estelar: uma cromosfera.

As medições da mancha brilhante sugerem a existência de poderosas ondas de choque na atmosfera da estrela que atingem temperaturas mais altas do que as previstas pelos modelos teóricos atuais para as estrelas AGB.

Uma possibilidade alternativa é, pelo menos, igualmente surpreendente: que a estrela possuía, no momento das observações, uma grande proeminência.

Os cientistas estão agora realizando novas observações, tanto com o ALMA como com outros instrumentos, a fim de melhor compreender a atmosfera surpreendente da W Hydrae.

"Torna-nos humildes, olhar para a nossa imagem de W Hydrae e ver o seu tamanho em comparação com a órbita da Terra. Nós nascemos a partir do material produzido em estrelas como esta, de modo que para nós é emocionante ter o desafio de entender algo que nos diz mais sobre as nossas origens e sobre o nosso futuro," disse Elvire De Beck, também da Universidade de Tecnologia de Chalmers.

Fonte: Chalmers University of Technology

Registrada uma colisão de aglomerados de galáxias

Uma gigantesca colisão de alguns aglomerados de galáxias, cada um contendo centenas de galáxias, produziu um espetacular panorama de ondas de choque e de energia.

Abell 2744

© Chandra/Subaru/VLA/VLT (Abell 2744)

As colisões geraram ondas de choque que produziram fogos de artifício celestes no comprimento de ondas de rádio, vistos na imagem acima, nas cores vermelho e laranja. No centro da imagem, a cor roxa indica os raios X produzidos pelo extremo calor da região.

A região é conhecida de forma coletiva como Abell 2744, e está localizada a cerca de 4 bilhões de anos-luz de distância da Terra. Os dados refrentes às ondas de rádio mostrados na imagem são provenientes do Karl G. Jansky Very Large Array (VLA), sendo estes dados combinados com os dados obtidos anteriormente pelo observatório de raios X Chandra da NASA. Ambos os dados foram sobrepostos a uma imagem feita nos comprimentos de onda da luz visível com dados obtidos pelo telescópio Subaru e pelo Very Large Telescope (VLT). As novas observações feitas com o VLA revelam regiões anteriormente não detectadas onde ondas de choque aceleram partículas subatômicas causando a emissão nas ondas de rádio.

Os astrônomos estão estudando a imagem combinada na tentativa de decifrar a sequência de colisões de aglomerados de galáxias. Atualmente, as evidências indicam uma colisão no sentido norte-sul e colisões de subaglomerados no sentido leste-oeste. Existe uma possível terceira colisão.

A descoberta foi relatada no periódico Astrophysical Journal.

Fonte: National Radio Astronomy Observatory

quarta-feira, 8 de novembro de 2017

A Nebulosa Variável de Hubble

O que faz com que a Nebulosa Variável de Hubble varie?

NGC 2261

© Hubble (NGC 2261)

A nebulosa incomum apresentada aqui altera sua aparência visivelmente em apenas algumas semanas. Descoberta há mais de 200 anos e posteriormente catalogada como NGC 2261, a notável nebulosa é assim chamada em homenagem a Edwin Hubble, que a estudou no início do século passado. A imagem em destaque foi tirada por outro homônimo do Hubble: o telescópio espacial.

A Nebulosa Variável de Hubble é uma nebulosa de reflexão feita de gás e poeira fina que se destaca da estrela R Monocerotis (R Mon). A nebulosa fraca tem cerca de um ano-luz e está a cerca de 2.500 anos-luz de distância da constelação do Unicórnio (Monocerotis),e estende-se por 1 ano-luz. A principal explicação de variabilidade para a Nebulosa Variável de Hubble detém que nódulos de poeira opaca passam perto de R Mon e lançam sombras em movimento sobre a poeira refletora vista no restante da nebulosa.

Fonte: NASA

Relíquia cósmica

Esta imagem obtida pelo telescópio espacial Hubble parece mergulhar nas profundezas escuras do Universo primordial. Aglomerados de galáxias massivos, como este evidenciado na imagem, o Abell 1300, nos ajuda a entender melhor o cosmos.

Abell 1300

© Hubble (Abell 1300)

Eles são essencialmente gigantescos telescópios naturais, ampliando a luz de qualquer galáxia situada atrás deles e propiciando a ver cada vez mais distante, e mais longe no tempo.

Este tipo bizarro de viagem no tempo é possível devido ao fenômeno de lente gravitacional, onde a influência gravitacional de um objeto massivo como o Abell 1300 age como uma lente, dobrando o próprio tecido do espaço ao seu redor e fazendo com que uma luz mais distante se mova numa trajetória curva. Para o observador, a fonte da luz, um objeto de fundo, como uma galáxia primordial, por exemplo, aparece distorcida e ampliada. O poder de lente gravitacional dos alomerados massivos nos ajudou a descobrir algumas das galáxias mais distantes conhecidas no Universo. O Hubble observou este fenômeno muitas vezes.

Esta imagem foi efetuada pela Advanced Camera for Surveys e a Wide Field Camera 3 como parte de um programa de observação denominado RELICS. O programa criou 41 aglomerados de galáxias massivos ao longo de 390 órbitas do Hubble e 100 horas de observação do telescópio espacial Spitzer, com o objetivo de encontrar as galáxias distantes mais brilhantes. Estudar estas galáxias com mais detalhes com ambos os telescópios atuais e o futuro telescópio espacial James Webb (JWST), auxiliará no entendimento sobre nossas origens cósmicas.

Fonte: NASA

domingo, 5 de novembro de 2017

NuSTAR examina mistério dos jatos dos buracos negros

Os buracos negros são famosos por serem devoradores vorazes, mas eles não se abastecem de tudo que cai na sua direção.

ilustração de buraco negro com disco de acreção e jato de plasma

© NASA/JPL-Caltech (ilustração de buraco negro com disco de acreção e jato de plasma)

Uma pequena porção de material é lançado sobre a forma de poderosos jatos de gás quente, chamado plasma, que podem causar estragos nos arredores. Ao longo do caminho, este plasma de alguma forma fica energizado o suficiente para irradiar luz fortemente, formando duas colunas brilhantes ao longo do eixo de rotação do buraco negro. Os cientistas há muito que discutem onde e como isto acontece no jato.

Os astrônomos têm novas pistas acerca deste mistério. Usando o telescópio espacial NuSTAR da NASA e uma câmara rápida chamada ULTRACAM acoplada ao Observatório William Herschel em La Palma, Espanha, cientistas conseguiram medir a distância que as partículas nos jatos viajam antes de se "ligarem" e se tornarem fontes brilhantes de luz. Essa distância é chamada "zona de aceleração".

Os cientistas examinaram dois sistemas na Via Láctea chamados de "binários de raios X", cada um com um buraco negro alimentando-se de uma estrela normal. Eles estudaram estes sistemas em diferentes ocasiões durante períodos de explosão, que é quando o disco de acreção, uma estrutura achatada de material em órbita do buraco negro, acende-se devido à queda do material.

Um sistema, chamado V404 Cygni, atingiu quase o seu brilho máximo quando os cientistas o observaram em junho de 2015. Neste momento, foi considerada a explosão mais brilhante de um binário de raios X vista no século XXI. O outro, chamado GX 339-4, tinha menos de 1% do seu brilho máximo esperado quando observado. A estrela e o buraco negro de GX 339-4 estão muito mais próximos um do outro do que os objetos homólogos do sistema V404 Cygni.

Apesar das suas diferenças, os sistemas mostraram atrasos de tempo semelhantes, cerca de um-décimo de segundo, entre o momento que o NuSTAR detectou pela primeira vez os raios X e o momento que a ULTRACAM detectou explosões no visível. Este atraso é inferior a um piscar de olhos, mas significativo para a física dos jatos dos buracos negros.

"Uma possibilidade é que a física do jato não é determinada pelo tamanho do disco, mas sim pela velocidade, temperatura e outras propriedades das partículas na base do jato," afirma Poshak Gandhi, astrônomo da Universidade de Southampton, Reino Unido.

A melhor teoria que os cientistas têm para explicar estes resultados é que os raios X têm origem no material muito próximo do buraco negro. Campos magnéticos fortes impulsionam parte deste material a altas velocidades ao longo do jato. Isto resulta em partículas que colidem quase à velocidade da luz, energizando o plasma até que começa a emitir a corrente de radiação óptica captada pela ULTRACAM.

Onde é que isto ocorre no jato? O desfasamento medido entre os raios X e a radiação visível explica isto. Ao multiplicar este tempo pela velocidade das partículas, que é quase a velocidade da luz, os cientistas determinam a distância máxima percorrida.

Esta extensão de aproximadamente 30.000 quilômetros representa a zona de aceleração interna no jato, onde o plasma sente a aceleração mais forte e "acende" a luz. Este valor corresponde a pouco menos de três vezes o diâmetro da Terra, mas é minúsculo em termos cósmicos, especialmente considerando que o buraco negro no sistema V404 Cygni tem uma massa correspondente a 3 milhões de Terras.

Fazer estas medições não foi tarefa fácil. Os telescópios de raios X no espaço e os telescópios ópticos em terra têm que observar binários de raio X exatamente ao mesmo tempo durante as explosões para que seja possível calcular o pequeno atraso entre as detecções dos telescópios. Esta coordenação requer um planejamento complexo entre as equipes dos observatórios. Na verdade, a coordenação entre o NuSTAR e a ULTRACAM só foi possível durante cerca de uma hora durante a explosão de 2015, mas isso foi suficiente para calcular os resultados inovadores acerca da zona de aceleração.

Os resultados também parecem relacionar-se com a compreensão dos buracos negros supermassivos, muito maiores do que os deste estudo. Num sistema supermassivo chamado BL Lacertae, com 200 milhões de vezes a massa do nosso Sol, os cientistas inferiram desfasamentos de tempo milhões de vezes maiores do que os que este estudo encontrou. Isto significa que o tamanho da zona de aceleração dos jatos está provavelmente relacionado com a massa do buraco negro.

"Estamos entusiasmados porque parece que encontrámos um padrão característico relacionado com o funcionamento interno dos jatos, não apenas nos buracos negros de massa estelar como V404 Cygni, mas também nos buracos negros supermassivos," explica Gandhi.

Os próximos passos são a confirmação deste atraso medido em observações de outros binários de raios X e o desenvolvimento de uma teoria que possa ligar os jatos dos buracos negros de todos os tamanhos.

"Os telescópios espaciais e terrestres, trabalhando em conjunto, foram a chave para esta descoberta. Mas ainda há muito para aprender. O futuro é promissor para a compreensão da física extrema dos buracos negros," realça Fiona Harrison, pesquisadora principal do NuSTAR e professora de astronomia no Caltech em Pasadena.

O estudo foi publicado na revista Nature Astronomy.

Fonte: University of Southampton

Encontrado resquício de um antigo oceano em Ceres

Ceres está repleto de minerais que contêm água, sugerindo que o planeta anão poderá ter tido um oceano global no passado.

animação mostra o planeta anão Ceres

© NASA/JPL-Caltech/Dawn (animação mostra o planeta anão Ceres)

Esta animação mostra o planeta anão Ceres, visto pela sonda Dawn da NASA. O mapa sobreposto à direita dá aos cientistas pistas sobre a estrutura interna de Ceres, graças a medições de gravidade.

O que aconteceu a esse oceano? Será que Ceres ainda tem água líquida hoje? Dois novos estudos da missão Dawn da NASA lançaram luz sobre estas questões.

A equipe da Dawn descobriu que a crosta de Ceres é uma mistura de gelo, sais e materiais hidratados que foram submetidos a atividades geológicas passadas e possivelmente recentes, e que esta crosta representa a maior parte deste antigo oceano. O segundo estudo baseia-se no primeiro e sugere que existe uma camada mais macia e facilmente deformável sob a crosta da superfície rígida de Ceres, que também pode ser a assinatura do líquido residual do oceano.

"Mais e mais, estamos aprendendo que Ceres é um mundo dinâmico e complexo que pode ter hospedado muita água líquida no passado, e ainda pode ter alguma água subterrânea," comenta Julie Castillo-Rogez, cientista do projeto Dawn, no JPL (Jet Propulsion Laboratory) da NASA.

Aterrizar em Ceres para prospectar o seu interior seria um desafio técnico e arriscaria contaminar o planeta anão. Em vez disso, os cientistas usam as observações orbitais da Dawn para medir a gravidade de Ceres, a fim de estimar a sua composição e estrutura interior.

O primeiro dos dois estudos, liderado por Anton Ermakov, pesquisador de pós-doutorado no JPL, usou medições da forma e dados de gravidade da missão Dawn para determinar a estrutura interna e composição de Ceres. As medições foram obtidas pela observação dos movimentos da nave com a DSN (Deep Space Network) da NASA para rastrear pequenas mudanças na órbita da sonda. Este estudo foi publicado na revista Journal of Geophysical Research: Planets.

A pesquisa apoia a possibilidade de que Ceres é geologicamente ativo, se não atualmente, então talvez tenha sido no passado recente. Três crateras - Occator, Kerwan e Yalod - e a solitária montanha de Ceres, Ahuna Mons, estão associadas com "anomalias gravitacionais". Isto significa que as discrepâncias entre os modelos da gravidade de Ceres feitos pelos cientistas e o que a Dawn observou nestes quatro locais podem ser associadas com estruturas subterrâneas.

"Ceres tem uma abundância de anomalias gravitacionais associadas com características geológicas excepcionais," comenta Ermakov. Nos casos de Ahuna Mons e Occator, as anomalias podem ser usadas para melhor entender a origem destas características, que se pensa serem expressões diferentes de criovulcanismo.

O estudo descobriu que a densidade da crosta é relativamente baixa, mais próxima da do gelo do que das rochas. No entanto, um estudo pelo pesquisador convidado da Dawn, Michael Bland do U.S. Geological Survey (USGS), indicou que o gelo é demasiado suave para ser o componente dominante da crosta forte de Ceres. Então, como pode a crosta de Ceres ser tão leve quanto o gelo em termos de densidade, mas simultaneamente muito mais forte? Para responder a esta questão, outra equipe modelou como a superfície de Ceres evoluiu com o tempo.

O segundo estudo, liderado por Roger Fu da Universidade de Harvard em Cambridge, Massachusetts, pesquisou a força e composição da crosta de Ceres e o interior mais profundo ao estudar a topografia do planeta anão. Este estudo foi publicado na revista Earth and Planetary Science Letters.

Ao estudar como a topografia evoluiu num corpo planetário, os cientistas podem entender a composição do seu interior. Uma crosta forte e dominada por rocha pode permanecer inalterada ao longo dos 4,5 bilhões de anos do Sistema Solar, enquanto uma crosta fraca, rica em gelos e sais, deformar-se-ia ao longo deste período.

Ao modelar a forma como a crosta de Ceres flui, Fu e colegas descobriram que é provavelmente uma mistura de gelo, sais, rocha e um componente adicional que se pensa ser hidrato de clatrato. Um hidrato de clatrato é uma "jaula" de moléculas de água que rodeiam uma molécula de gás. Esta estrutura é 100 a 1.000 vezes mais forte do que a água gelada, apesar de ter quase a mesma densidade.

Os cientistas pensam que Ceres já teve características de superfície mais pronunciadas, mas que suavizaram com o passar do tempo. Este tipo de achatamento de montanhas e vales requer uma crosta de alta resistência descansando por cima de uma camada mais deformável, que provavelmente pode conter um pouco de líquido.

A equipe pensa que a maior parte do oceano antigo de Ceres está agora congelado e preso na crosta sob a forma de gelo, hidratos de clatrato e sais. Assim permanece há mais de 4 bilhões de anos. Mas se existir líquido residual por baixo, este oceano ainda não está completamente congelado. Isso é consistente com os vários modelos de evolução térmica de Ceres publicados antes da chegada da Dawn, apoiando a ideia de que o interior mais profundo de Ceres contém o líquido restante do seu antigo oceano.

Fonte: Jet Propulsion Laboratory