Mostrando postagens com marcador Cosmologia. Mostrar todas as postagens
Mostrando postagens com marcador Cosmologia. Mostrar todas as postagens

quinta-feira, 3 de julho de 2025

Nova era na medição da primeira luz do Universo

A luz mais antiga do Universo tem viajado pelo espaço desde logo após o Big Bang.

© Kevin Zagorski (South Pole Telescope)

Conhecida como radiação cósmica de fundo em micro-ondas, é imperceptível ao olho humano. Mas se os cientistas a conseguirem captar, utilizando alguns dos detectores mais sensíveis alguma vez fabricados, pode dizer-nos como o nosso Universo se formou e evoluiu ao longo do tempo.

Os pesquisadores divulgaram medições sensíveis, sem precedentes, da radiação cósmica de fundo em micro-ondas, resultantes de dois anos de observações com uma câmara melhorada do SPT (South Pole Telescope). O telescópio, localizado na Estação Amundsen-Scott, na Antártida, foi concebido especificamente para mapear a luz muito tênue da radiação de fundo em micro-ondas.

Os resultados são impressionantes, a precisão dos pormenores da radiação cósmica de fundo em micro-ondas excede a de todas as medições anteriores, mesmo as efetuadas a partir do espaço. Quando combinados com dados de outros telescópios terrestres, oferecem uma nova referência para restringir as possíveis respostas a questões importantes sobre o Universo.

As novas leituras fornecem um controle cruzado do nosso modelo fundamental do Universo. À medida que forem sendo divulgados mais dados, estes irão aperfeiçoar vários testes de grandes questões pendentes na cosmologia, tais como a natureza da energia escura e o ritmo a que o Universo está se expandindo.

A radiação cósmica de fundo em micro-ondas, por vezes referida como o brilho remanescente do Big Bang, data de há mais de 13 bilhões de anos, do período imediatamente após a formação do nosso Universo. Isto torna-a uma fonte de informação incrivelmente rica. Esta radiação é extremamente tênue, e as suas variações são ainda mais sutis. Para ter a possibilidade de a captar, é necessário um céu muito limpo e condições de observação perfeitamente secas, condições essas que se encontram na Antártida.

O SPT, gerido por uma colaboração liderada pela Universidade de Chicago, tem mapeado esta radiação desde 2007. Ao longo dos anos, foram instaladas várias câmaras no telescópio, mas a mais recente, conhecida como SPT-3G, tem mais detectores do que as versões anteriores. Os dados do mais recente resultado foram obtidos em 2019 e 2020 e representam os dois primeiros anos de observações da SPT-3G na sua potência total. Cobrem cerca de 1/25 do céu, mapeando-o com mais pormenor do que qualquer outra medição deste tipo.

Uma das principais utilizações para estes dados é a de colocar restrições nas muitas possíveis respostas às nossas questões sobre o Universo, tais como a forma como se formou e as leis fundamentais que regem a sua evolução. Os dados fornecidos pela radiação cósmica de fundo em micro-ondas ajudam a orientar a procura de uma imagem coesa de tudo o que existe.

O melhor modelo atual para explicar a formação do cosmos é conhecido como Lambda-CDM. No entanto, estudos recentes têm revelado indícios tentadores de que o modelo Lambda-CDM pode não ser o quadro completo. Há também um debate em andamento sobre o ritmo de expansão do Universo, conhecido como "tensão de Hubble", que teria ramificações significativas para a nossa compreensão do Universo e na qual a radiação cósmica de fundo em micro-ondas desempenha um papel fundamental.

As descobertas confirmam a tensão de Hubble de forma independente com uma significância estatística muito elevada, ao mesmo tempo que se mantêm consistentes com outras limitações da radiação cósmica de fundo em micro-ondas, incluindo as da missão do satélite Planck e do ACT (Atacama Cosmology Telescope), no Chile. Também acentuam uma anomalia que surgiu recentemente no nosso quadro cosmológico, a discordância entre as restrições à radiação cósmica de fundo em micro-ondas e as dos levantamentos em grande escala dos movimentos das galáxias (particularmente os resultados recentes do DESI (Dark Energy Spectroscopic Instrument).

Anteriormente, o padrão de ouro para as medições da radiação cósmica de fundo em micro-ondas eram os dados do satélite Planck, obtidos há mais de uma década. Agora, os novos dados do SPT, quando combinados com os dados do ACT, estabelecem um novo padrão, um momento pelo qual muitos no campo têm estado à espera. Estes novos resultados representam menos de um-quarto dos dados obtidos com a SPT-3G no SPT.

Os telescópios espaciais, como o Planck, têm a vantagem de ter uma visão mais nítida, uma vez que a atmosfera da Terra não está perturbando a visão. Mas é substancialmente mais fácil operar um telescópio a partir do solo. É muito mais fácil criar um instrumento complexo que funcione mesmo num local tão inóspito como a Antártida do que conceber algo que tenha de sobreviver a um lançamento de foguete e às condições do espaço.

Fonte: University of Chicago

terça-feira, 3 de junho de 2025

Nova medição da expansão do Universo sugere resolução de um conflito

Ao longo da última década, os cientistas têm tentado resolver o que parecia ser uma grande inconsistência no Universo.

© Webb (NGC 1365)

O Universo expande-se ao longo do tempo, cujo ritmo de expansão é refletida pela Constante de Hubble, mas a velocidade a que se expande parece ser diferente consoante se olha para o início da história do Universo ou para os dias de hoje. A ser verdade, isto teria sido um grande problema para o modelo padrão que representa a nossa melhor compreensão do Universo. Mas graças ao telescópio espacial James Webb, cientistas da Universidade de Chicago conseguiram obter novos e melhores dados, sugerindo que, afinal, pode não haver conflito. 

Existem atualmente duas abordagens principais para calcular a velocidade a que o nosso Universo está se expandindo. A primeira abordagem consiste em medir a luz remanescente do Big Bang, que ainda está viajando pelo Universo. Esta radiação, conhecida como radiação cósmica de fundo em micro-ondas, informa sobre as condições nos primeiros tempos do Universo. A segunda abordagem consiste em medir a velocidade a que o Universo está se expandindo neste momento, na nossa vizinhança astronômica local. Paradoxalmente, isto é muito mais complicado do que ver para trás no tempo, porque medir distâncias com precisão é um grande desafio. 

Ao longo do último meio século, os cientistas descobriram uma série de formas de medir distâncias relativamente próximas. Uma delas baseia-se na captação da luz de uma determinada classe de estrelas no seu pico de brilho, quando explodem como supernova no final da sua vida. Se conhecermos o brilho máximo destas supernovas, a medição das suas luminosidades aparentes permite-nos calcular a sua distância. Observações adicionais dizem-nos a que velocidade a galáxia em que a supernova ocorreu está se afastando de nós.

Existem também dois outros métodos que utilizam dois outros tipos de estrelas: as estrelas gigantes vermelhas e as estrelas de carbono. No entanto, há muitas correções que têm de ser aplicadas a estas medições antes de se poder declarar uma distância final. Em primeiro lugar, os cientistas têm de ter em conta a poeira cósmica que obscurece a luz entre nós e estas estrelas distantes nas suas galáxias hospedeiras. Têm também de verificar e corrigir as diferenças de luminosidade que podem surgir ao longo do tempo cósmico. E, finalmente, têm de ser identificadas e corrigidas as incertezas sutis da instrumentação utilizada para efetuar as medições. Mas com os avanços tecnológicos, como o lançamento do muito mais potente telescópio espacial James Webb, em 2021, os cientistas têm conseguido aperfeiçoar cada vez mais estas medições.

O último cálculo efetuado pelos pesquisadores, que incorpora dados do telescópio espacial Hubble e do telescópio espacial James Webb, determina um valor de 70,4 quilômetros por segundo por megaparsec, mais ou menos 3%. Isto coloca o seu valor em concordância estatística com as medições recentes da radiação cósmica de fundo, que é de 67,4, mais ou menos 0,7%. O Webb tem uma resolução quatro vezes superior à do Hubble, o que lhe permite identificar estrelas individuais anteriormente detectadas em grupos desfocados. É também cerca de 10 vezes mais sensível, o que permite uma maior precisão e a capacidade de encontrar objetos de interesse ainda mais tênues. 

Os cientistas ainda estão tentando encontrar falhas no Modelo Padrão que descreve o Universo, o que poderia fornecer pistas sobre a natureza de dois grandes mistérios pendentes, a matéria escura e a energia escura. Mas a Constante de Hubble parece cada vez mais não ser o local onde procurar.

Um artigo foi publicado no periódico The Astrophysical Journal.

Fonte: University of Chicago

sexta-feira, 8 de dezembro de 2023

Uma nova possível explicação para a tensão de Hubble

O Universo está se expandindo. A velocidade a que se expande é descrita pela chamada constante de Hubble-Lemaitre.

© U. Bonn (distribuição da matéria no espaço)

A imagem mostra a distribuição da matéria no espaço (azul; os pontos amarelos representam galáxias individuais). A Via Láctea (verde) encontra-se numa zona com pouca matéria. As galáxias na bolha movem-se na direção das densidades de matéria mais elevadas (setas vermelhas).

Mas há uma controvérsia acerca do valor preciso da constante de Hubble-Lemaitre: diferentes métodos de medição fornecem valores contraditórios. A chamada "tensão de Hubble" constitui um quebra-cabeças para os cosmólogos. 

Os pesquisadores das Universidades de Bonn e de St. Andrews propõem agora uma nova solução: utilizando uma teoria alternativa da gravidade, a discrepância entre os valores medidos pode ser facilmente explicada, a tensão de Hubble desaparece.

A expansão do Universo faz com que as galáxias se afastem umas das outras. A velocidade a que o fazem é proporcional à distância que as separa. Por exemplo, se a galáxia A estiver duas vezes mais longe da Terra do que a galáxia B, a sua distância de nós também aumenta duas vezes mais depressa. O astrônomo americano Edwin Hubble foi um dos primeiros a reconhecer esta relação. Para calcular a velocidade a que duas galáxias se afastam uma da outra, é necessário saber a distância que as separa. 

No entanto, isto também requer uma constante pela qual esta distância deve ser multiplicada. Esta é a chamada constante de Hubble-Lemaitre, um parâmetro fundamental em cosmologia. O seu valor pode ser determinado, por exemplo, observando as regiões muito distantes do Universo. Isto dá uma velocidade de quase 244.000 quilômetros por hora por megaparsec de distância (um megaparsec corresponde a pouco mais de três milhões de anos-luz). 

Mas também podemos olhar para corpos celestes que estão muito mais perto de nós, as chamadas supernovas do Tipo Ia, que são uma determinada categoria de explosão estelar. É possível determinar com grande exatidão a distância de uma supernova do Tipo Ia à Terra. Também sabemos que os objetos brilhantes mudam de cor quando se afastam de nós, e quanto mais depressa se afastam, mais forte é a mudança. Isto é semelhante a uma ambulância, cuja sirene soa mais grave à medida que se afasta de nós. Se calcularmos a velocidade das supernovas do Tipo Ia a partir da sua mudança de cor e a correlacionarmos com a sua distância, chegamos a um valor diferente para a constante de Hubble-Lemaitre, ou seja, um pouco menos de 264.000 quilômetros por hora por megaparsec de distância.

O Universo parece, portanto, estar se expandindo mais rapidamente na nossa vizinhança, ou seja, até uma distância de cerca de três bilhões de anos-luz do que na sua totalidade. No entanto, foi recentemente feita uma observação que pode explicar este fato. De acordo com esta observação, a Terra está localizada numa região do espaço onde existe relativamente pouca matéria, comparável a uma bolha de ar num bolo. A densidade da matéria é maior à volta da bolha. As forças gravitacionais emanam desta matéria circundante, que puxa as galáxias na bolha para as orlas da cavidade. 

Outro grupo de pesquisa mediu recentemente a velocidade média de um grande número de galáxias que se encontram a 600 milhões de anos-luz de nós. Descobriu-se que estas galáxias se afastam de nós quatro vezes mais depressa do que o modelo padrão da cosmologia permite. Isto deve-se ao fato de o modelo padrão não prever estas "bolhas", elas não deveriam realmente existir. Em vez disso, a matéria deveria estar distribuída uniformemente no espaço. Se fosse este o caso, seria difícil explicar quais as forças que impulsionam as galáxias para a sua alta velocidade.

Os pesquisadores utilizaram uma teoria da gravidade modificada numa simulação em computador. Esta "dinâmica newtoniana modificada" denominada MOND (Modified Newtonian dynamics) foi proposta há quatro décadas pelo físico israelita prof. Dr. Mordehai Milgrom. Atualmente, ainda é considerada uma teoria "forasteira". Contudo, nos cálculos desta pesquisa, a teoria MOND prevê com exatidão a existência de tais bolhas. Se se assumisse que a gravidade se comporta de acordo com os pressupostos de Milgrom, a tensão de Hubble desapareceria: haveria apenas uma constante para a expansão do Universo e os desvios observados deveriam ser irregularidades na distribuição da matéria.

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Universität Bonn

domingo, 1 de outubro de 2023

Nova revisão da massa da Via Láctea

Graças ao catálogo mais recente do satélite Gaia da ESA, uma equipe internacional liderada por astrônomos do Observatório de Paris e do CNRS (Centre National de la Recherche Scientifique) obteve a medição mais precisa da massa da Via Láctea.

© NASA / JPL-Caltech (ilustração da Via Láctea)

Este estudo abre questões importantes na cosmologia, nomeadamente acerca da quantidade de matéria escura contida na nossa Galáxia. A massa total da Via Láctea está estimada em apenas 200 bilhões de vezes a do Sol, o que representa uma revisão em baixa significativa, cerca de quatro a cinco vezes inferior às estimativas anteriores. 

Este novo valor foi obtido a partir do terceiro lançamento de dados do catálogo Gaia, publicado em 2022, que fornece dados abrangentes sobre 1,8 bilhões de estrelas, englobando as três componentes espaciais e as três componentes de velocidade num espaço de seis dimensões dentro da Via Láctea. 

Utilizando os dados do Gaia, os cientistas conseguiram construir a curva de rotação mais exata alguma vez observada para uma galáxia espiral e deduzir a massa da Via Láctea. Antes do Gaia, obter uma curva de rotação robusta para a Via Láctea era um desafio, ao contrário do que acontecia com as outras galáxias espirais. Este desafio resultava da nossa posição no interior da Via Láctea, o que tornava impossível distinguir com precisão os movimentos e as distâncias das estrelas no disco galáctico. 

No estudo recente, a curva de rotação da nossa Galáxia é atípica: ao contrário das determinadas para outras grandes galáxias espirais, não é achatada. Pelo contrário, na periferia do disco da nossa Galáxia, esta curva começa a diminuir rapidamente, seguindo a previsão conhecida como declínio Kepleriano. 

A obtenção de uma curva de rotação para a Via Láctea que exiba um declínio Kepleriano exige que a nossa Galáxia seja enquadrada num contexto cosmológico. Um dos maiores avanços da astronomia moderna foi a constatação de que as velocidades de rotação dos grandes discos das galáxias espirais eram muito mais rápidas do que seria de esperar de um declínio Kepleriano. 

Na década de 1970, os astrônomos: Vera Rubin, que utilizou observações de gás ionizado, e Albert Bosma, que estudou gás neutro, demonstraram que a velocidade de rotação das galáxias espirais permanece constante, muito para além dos seus discos ópticos.

A consequência imediata desta descoberta foi a proposta da existência de matéria escura, adicional à matéria observável, distribuída num halo que envolve os discos das galáxias espirais. Sem esta matéria escura, as curvas de rotação teriam seguido um declínio Kepleriano. Este último indica a ausência de quantidades significativas de matéria fora do disco óptico. É o caso da Via Láctea, segundo o estudo atual. 

Considerando que a matéria comum (estrelas e gás frio) da Via Láctea é geralmente estimada em pouco mais de 0,6x10¹¹ massas solares, representa cerca de um-terço da matéria total. Este fato constitui uma revolução na cosmologia, uma vez que até agora se concordava que a matéria escura deveria ser pelo menos seis vezes mais abundante do que a matéria comum. 

Se a maioria das outras grandes galáxias espirais não exibe uma curva de rotação com um declínio Kepleriano, o que é que torna a nossa Galáxia tão diferente? Uma explicação possível pode ser que a Via Láctea tenha sofrido relativamente poucas perturbações devido a colisões violentas entre galáxias. A sua última grande fusão ocorreu há cerca de 9 bilhões de anos, em contraste com a média de 6 bilhões de anos para outras galáxias espirais. Em qualquer caso, isto indica que a curva de rotação obtida para a Via Láctea é particularmente precisa, não sendo afetada pelos resíduos de uma colisão tão antiga.

A segunda possibilidade pode surgir das diferenças metodológicas entre a curva de rotação derivada dos dados de seis dimensões de estrelas fornecidos pelo satélite Gaia, por exemplo, para a Via Láctea, e as curvas de rotação derivadas usando gás neutro para outras galáxias. Este trabalho abre caminho para uma reavaliação das curvas de rotação das grandes galáxias espirais e do seu conteúdo em matéria comum e escura. 

Um artigo foi publicado no periódico Astronomy & Astrophysics

Fonte: Observatoire de Paris

terça-feira, 19 de setembro de 2023

O mistério da Tensão de Hubble

O ritmo de expansão do Universo, a que se dá o nome constante de Hubble, é um dos parâmetros fundamentais para compreender a evolução e o destino final do cosmos. No entanto, observa-se uma diferença persistente, designada por "Tensão de Hubble", entre o valor da constante medido com uma vasta gama de indicadores de distância independentes e o seu valor previsto a partir do brilho remanescente do Big Bang.

© Hubble / Webb (NGC 5584)

Observações combinadas do instrumento NIRCam (Near-Infrared Camera) do Webb e do WFC3 (Wide Field Camera 3) do Hubble mostram a galáxia espiral NGC 5584, que se encontra a 72 milhões de anos-luz da Terra. Entre as estrelas brilhantes da NGC 5584 encontram-se estrelas pulsantes chamadas variáveis Cefeidas e supernovas do Tipo Ia, uma classe especial de estrelas em explosão. Os astrônomos utilizam as variáveis Cefeidas e as supernovas do Tipo Ia como marcadores de distância para medir o ritmo de expansão do Universo.

O telescópio espacial James Webb fornece novas capacidades para analisar e aperfeiçoar algumas das mais fortes evidências observacionais da Tensão de Hubble. Adam Riess, da Universidade Johns Hopkins e do STScI (Space Telescope Science Institute), laureado com o Prêmio Nobel, apresenta o seu trabalho recente e o dos seus colegas, utilizando observações do Webb para melhorar a precisão das medições locais da constante de Hubble. 

Os cosmólogos querem decifrar um sinal cósmico de limite de velocidade que fornece a que velocidade o Universo está se expandindo, ou seja, um número chamado constante de Hubble. Este sinal está escrito nas estrelas de galáxias distantes. O brilho de certas estrelas nestas galáxias mostra a que distância estão e, portanto, durante quanto tempo esta luz viajou até chegar a nós, e os desvios para o vermelho das galáxias revelam quanto o Universo se expandiu durante este tempo, indicando o ritmo de expansão. 

Uma classe particular de estrelas, as variáveis Cefeidas, fornece as medições de distância mais precisas desde há mais de um século, porque estas estrelas são extraordinariamente brilhantes: são estrelas supergigantes, com uma luminosidade cem mil vezes superior à do Sol. Além disso, elas pulsam durante um período de semanas que indica a sua luminosidade relativa. Quanto mais longo for o período, mais brilhantes são intrinsecamente. São a ferramenta de referência para medir as distâncias de galáxias a cem milhões de anos-luz de distância ou mais, um passo crucial para determinar a constante de Hubble. Infelizmente, as estrelas nas galáxias estão amontoadas num pequeno espaço a partir do nosso ponto de vista distante e, por isso, muitas vezes não possui resolução necessária para as separar das suas vizinhas na linha de visão.

Uma das principais justificações para a construção do telescópio espacial Hubble foi a resolução deste problema. Antes do lançamento do Hubble em 1990 e das subsequentes medições das Cefeidas, o ritmo de expansão do Universo era tão incerto que os astrônomos nem sabiam se o Universo estava se expandindo. Isto porque um ritmo de expansão mais rápido leva a uma idade mais jovem do Universo e um ritmo de expansão mais lento a uma idade mais velha do Universo. O Hubble tem uma melhor resolução no comprimento de onda visível do que qualquer telescópio terrestre porque está situado acima dos efeitos de desfocagem da atmosfera da Terra. Como resultado, pode identificar variáveis Cefeidas individuais em galáxias que estão a mais de cem milhões de anos-luz de distância e medir o intervalo de tempo durante o qual mudam de brilho.

No entanto, também temos de observar as Cefeidas na parte do infravermelho próximo do espectro, para ver a luz que passa incólume através da poeira (a poeira absorve e dispersa a luz visível azul, fazendo com que os objetos distantes pareçam tênues e dando o aspecto que estão mais longe do que estão). Infelizmente, a visão da luz vermelha do Hubble não é tão nítida como a da luz azul, pelo que a luz das estrelas Cefeidas que vemos está misturada com outras estrelas no seu campo de visão. Porém, a visão nítida no infravermelho é a especialidade do telescópio espacial James Webb. Com o seu grande espelho e óptica sensível, consegue separar facilmente a luz das Cefeidas das estrelas vizinhas com pouca mistura. 

No primeiro ano de operações do Webb, foram recolhidas observações de Cefeidas encontradas pelo Hubble em dois passos ao longo do que é conhecido como a escada de distâncias cósmicas. O primeiro passo envolve a observação de Cefeidas numa galáxia (NGC 4258) com uma distância geométrica conhecida que permite calibrar a verdadeira luminosidade das Cefeidas. O segundo passo é observar Cefeidas nas galáxias hospedeiras de supernovas recentes do Tipo Ia. A combinação dos dois primeiros passos transfere o conhecimento da distância às supernovas para calibrar as suas verdadeiras luminosidades. O terceiro passo é observar estas supernovas a uma grande distância, onde a expansão do Universo é aparente e pode ser medida comparando as distâncias inferidas a partir da sua luminosidade e os desvios para o vermelho das galáxias hospedeiras das supernovas. Esta sequência de passos é conhecida como a escada de distâncias.

Foram observadas mais de 320 Cefeidas nas duas primeiras etapas. Confirmou-se que as anteriores medições do telescópio espacial Hubble eram exatas, embora mais ruidosas. Também foram observadas mais quatro hospedeiras de supernovas com o Webb e verificou-se um resultado semelhante para toda a amostra.

O que os resultados ainda não explicam o motivo do Universo parece estar se expandindo tão rapidamente! Podemos prever o ritmo de expansão do Universo observando a sua imagem primordial, a radiação cósmica de fundo em micro-ondas e depois utilizar o melhor modelo de como cresce ao longo do tempo para evidenciar a que velocidade o Universo deverá estar se expandindo atualmente. O fato de a medida atual do ritmo de expansão exceder significativamente a previsão é um problema que já dura há uma década, a chamada "Tensão de Hubble". 

A possibilidade mais excitante é que ela seja uma pista sobre algo que está faltando na compreensão do cosmos. Pode indicar a presença de energia escura exótica, matéria escura exótica, uma revisão da compreensão da gravidade, a presença de uma partícula ou campo único. O mistério da Tensão de Hubble aprofunda-se.

Fonte: Space Telescope Science Institute

sexta-feira, 24 de fevereiro de 2023

Evidência observacional que liga os buracos negros à energia escura

Pesquisando dados existentes que abrangem 9 bilhões de anos, uma equipe de pesquisadores liderada por cientistas da Universidade do Havaí descobriu a primeira evidência de "acoplamento cosmológico", ou seja, um fenômeno recentemente previsto na teoria da gravidade de Einstein, possível apenas quando são colocados buracos negros dentro de um Universo em evolução.

© U. Havaí (ilustração de um buraco negro supermassivo)

Os astrofísicos Duncan Farrah, do Instituto para Astronomia e do Departamento de Física e Astronomia, e Kevin Croker, professor de física e astronomia, lideraram este ambicioso estudo, combinando a perícia em evolução galáctica e a teoria da gravidade com a experiência de observação e análise de pesquisadores de nove países para fornecer as primeiras informações sobre o que poderá existir dentro de buracos negros reais.

A equipe estudou os buracos negros supermassivos nos núcleos de galáxias antigas e inativas. Foi descoberto que estes buracos negros ganham massa ao longo de bilhões de anos de uma forma que não pode ser facilmente explicada pelos processos normais da galáxia e dos buracos negros, tais como fusões ou acreção de gás. O crescimento em massa destes buracos negros corresponde às previsões para os buracos negros que não só se acoplam cosmologicamente, mas também incluem energia de vácuo, material que resulta do aperto de matéria tanto quanto possível sem quebrar as equações de Einstein, evitando assim uma singularidade. Com a ausência de singularidades, a energia de vácuo combinada dos buracos negros produzidos nas mortes das primeiras estrelas do Universo está em acordo com a quantidade medida de energia escura no nosso Universo.

"Estamos realmente dizendo duas coisas ao mesmo tempo: que há evidências de que as soluções típicas dos buracos negros não funcionam a longo prazo, e que temos a primeira fonte astrofísica proposta para a energia escura," disse Farrah. 

Estas novas medições, se apoiada por mais evidências, vão redefinir a nossa compreensão do que é um buraco negro. A equipe determinou como utilizar as medições existentes de buracos negros para procurar um acoplamento cosmológico. 

Os buracos negros são também difíceis de observar durante longos períodos de tempo. As observações podem ser feitas durante alguns segundos, ou dezenas de anos no máximo, tempo insuficiente para detectar como um buraco negro pode mudar ao longo da duração do Universo. Ver como os buracos negros mudam durante uma escala de bilhões de anos é uma tarefa complicada. Seria necessário identificar uma população de buracos negros e obter a sua distribuição de massa há bilhões de anos. Então a mesma população, ou uma população ancestralmente ligada, teria que ser observada nos dias de hoje e novamente ser capaz de medir a sua massa.

Os esforços foram concentrados apenas nos buracos negros em galáxias elípticas em evolução passiva, para resolver esta questão. As galáxias elípticas são enormes e formaram-se cedo. Elas possivelmente são o resultado final de colisões de galáxias, enormes em tamanho e com trilhões de estrelas antigas. Ao olhar apenas para galáxias elípticas sem atividade recente, a equipe pôde argumentar que quaisquer alterações nas massas dos seus buracos negros não poderiam ser facilmente causadas por outros processos conhecidos.

Utilizando estas populações, a equipe examinou como a massa dos seus buracos negros centrais mudou ao longo dos últimos 9 bilhões de anos. Se o crescimento em massa dos buracos negros ocorresse através da acreção ou fusão, então não se esperaria que as massas destes buracos negros mudassem muito. No entanto, se os buracos negros ganharem massa através do acoplamento ao Universo em expansão, então estas galáxias elípticas em evolução passiva poderiam revelar este fenômeno.

Os cientistas descobriram que quanto mais para trás no tempo olhavam, menores eram os buracos negros em massa, em relação às suas massas atuais. Estas mudanças foram grandes: os buracos negros eram hoje 7 a 20 vezes mais massivos do que eram há 9 bilhões de anos, suficientemente grandes para que o acoplamento cosmológico pudesse ser responsável. 

A equipe também analisou se o crescimento dos buracos negros medidos no primeiro estudo podia ser explicado apenas pelo acoplamento cosmológico. Podemos pensar num buraco negro acoplado como um elástico, sendo esticado juntamente com o Universo à medida este se expande. À medida que é esticado, a sua energia aumenta. A equação E = m.c^2 de Einstein diz-nos que a massa e a energia são proporcionais, pelo que a massa do buraco negro também aumenta. Quanto essa massa aumenta depende da força de acoplamento, uma variável chamada de k. Quanto mais forte for o elástico, mais difícil é de esticar, portanto, mais energia tem quando esticado. 

Uma vez que o crescimento em massa dos buracos negros, devido ao acoplamento cosmológico, depende do tamanho do Universo, e o Universo era menor no passado, os buracos negros no primeiro estudo têm que ser menos massivos, no valor correto, para que a explicação do acoplamento cosmológico funcione. 

A equipe examinou cinco populações diferentes de buracos negros em três coleções diferentes de galáxias elípticas, retiradas de quando o Universo tinha aproximadamente metade e um-terço do seu tamanho atual. Em cada comparação, esse k era quase 3. Então todos os buracos negros no Universo contribuem coletivamente com uma densidade de energia escura quase constante, tal como as medições de energia escura sugerem. Os buracos negros provêm de grandes estrelas mortas, por isso se soubermos quantas estrelas grandes são produzidas, podemos estimar quantos buracos negros são também produzidos e quanto crescem como resultado do acoplamento cosmológico.

A equipe utilizou as medições mais recentes do ritmo de formação estelar primitiva fornecidas pelo telescópio espacial James Webb e descobriu que os números alinham. De acordo com os pesquisadores, os seus estudos fornecem um quadro para os físicos teóricos e para os astrônomos continuarem testando e para a atual geração de experiências de energia escura como o DESI (Dark Energy Spectroscopic Instrument) e o DES (Dark Energy Survey). 

Este modelo atualmente deve ser considerado como uma hipótese excitante, que pode ser testada experimentalmente com mais estudos dos dados existentes. Se confirmada, representa uma grande mudança na cosmologia e aponta para uma revolução na nossa compreensão do Universo. 

Foram publicados recentemente dois artigos científicos, um no periódico The Astrophysical Journal e o outro no The Astrophysical Journal Letters

Fonte: Imperial College London

sexta-feira, 30 de dezembro de 2022

O Universo pode ser mais instável do que pensamos

A estabilidade final do vácuo do nosso Universo pode estar nas massas de duas partículas fundamentais, o bóson de Higgs, que habita todo o espaço e tempo, e o quark top.

© Tunnel Motions (ilustração de um bóson de Higgs)

As últimas medições dessas massas revelam que nosso Universo é metaestável, o que significa que pode persistir em seu estado atual essencialmente para sempre, ou não. 

Nosso Universo nem sempre foi o mesmo. Nos primeiros momentos do Big Bang, quando o cosmos era uma mera fração de seu tamanho atual, as energias e temperaturas eram tão altas que até mesmo as regras fundamentais da física eram completamente diferentes. Mais notavelmente, ao mesmo tempo, todas as quatro forças da natureza (gravidade, eletromagnetismo, nuclear forte e nuclear fraca) foram fundidas em uma única força unificada. A natureza dessa força unificada permanece um mistério, mas à medida que o Universo se expandiu e esfriou desde o estado inicial, as forças se separaram.

Primeiro veio a gravidade, depois a nuclear forte e, por último, o eletromagnetismo e a força nuclear fraca se separaram. Essa última etapa podemos recriar em laboratório. Nos colisores de partículas mais poderosos, é possível obter as energias necessárias para temporariamente, pelo menos, recombinar essas forças em uma única força “eletrofraca”. 

Cada vez que as forças se dividiam, o cosmos passava por uma transição de fase radical, povoado por novas partículas e forças. Por exemplo, a força eletrofraca unificada é transportada por um quarteto de partículas sem massa, mas a força eletromagnética é transportada por uma única partícula sem massa, o fóton, enquanto três partículas massivas (W-, W+ e Z) carregam a nuclear fraca. Se essas duas forças não tivessem se separado, a vida como a conhecemos, que depende de interações eletromagnéticas para unir átomos em moléculas, simplesmente não existiria. 

O Universo não passou por tal reorganização de forças fundamentais em mais de 13 bilhões de anos, mas isso não significa que não seja capaz de repetir os mesmos truques. A estabilidade atual do vácuo depende de como foi a divisão da força eletrofraca. Essa divisão trouxe o Universo ao seu estado fundamental final de energia mais baixa? Ou é apenas uma parada no caminho de sua evolução posterior?

A resposta se resume às massas de duas partículas fundamentais. Uma delas é o bóson de Higgs, que desempenha um papel importante na física: sua existência desencadeou a separação das forças eletromagnética e nuclear fraca há bilhões de anos. A princípio, quando nosso Universo era quente e denso, o bóson de Higgs permaneceu em segundo plano, permitindo que a força eletrofraca governasse sem impedimentos. Mas uma vez que o Universo esfriou além de um certo ponto, este bóson tornou sua presença conhecida e interferiu com essa força, criando uma separação que foi mantida desde então.

A massa do bóson de Higgs determinou quando essa divisão aconteceu e regula o quão “forte” essa separação é hoje. Mas o ele desempenha outro papel importante na física: ao interagir com muitas outras partículas, ele dá massa a essas partículas. A força com que uma partícula se conecta ao Higgs governa a massa dessa partícula. Por exemplo, o elétron quase não interage com o Higgs, então ele ganha uma massa leve de 511 MeV. No outro extremo do espectro, o quark top interage mais com o Higgs, tornando-o o objeto mais pesado no Modelo Padrão da física de partículas, pesando 175 GeV.

Na física de partículas, as partículas estão constantemente interagindo e interferindo com todos os outros tipos de partículas, mas a força dessas interações depende das massas das partículas. Então, quando ocorre a tentativa de avaliar qualquer coisa que envolva o bóson de Higgs, como sua capacidade de manter a separação entre as forças eletromagnética e nuclear fraca, é necessário também considerar como as outras partículas vão interferir nesse esforço. 

E como o quark top é facilmente o maior do grupo (o segundo maior, o quark bottom, pesa apenas 5 GeV), é essencialmente a única outra partícula que há necessidade de atenção. 

Quando foi calculado pela primeira vez a estabilidade do Universo, conforme determinado pela capacidade do bóson de Higgs de manter a separação da força eletrofraca, não se sabia a massa nem do próprio Higgs nem do quark top. Inserir as duas massas destas partículas nas equações de estabilidade revela que o Universo é metaestável. Isso é diferente de estável, o que significaria que não há chance de o Universo se dividir instantaneamente, mas também diferente de instável, o que significaria que já aconteceu. Em vez disso, o Universo está equilibrado em uma posição bastante precária: ele pode permanecer em seu estado atual indefinidamente, mas se algo perturbasse o espaço-tempo da maneira errada, ele se transformaria em um novo estado fundamental.

Como seria esse novo estado? É impossível dizer, pois o novo Universo apresentaria uma nova física, com novas partículas e novas forças da natureza. Mas é seguro dizer que a vida seria diferente, se não completamente impossível. O que é pior, pode já ter acontecido. Algum canto do cosmos pode já ter começado a transição, com a bolha de uma nova realidade se expandindo na velocidade da luz. Não saberíamos que nos atingiu até que já chegasse.

Fonte: Astronomy

sábado, 29 de maio de 2021

O Dark Energy Survey cataloga milhões de galáxias

O último lançamento da Dark Energy Survey (DES) cataloga milhões de galáxias, mapeando a história da aglomeração de galáxias no espaço e no tempo.

© DES (campos profundos captados pela câmara Dark Energy)

Em uma das maiores pesquisas do céu já feitas, os astrônomos captaram 226 milhões de galáxias numa distância até 7 bilhões de anos-luz em uma área que cobre cerca de um oitavo de todo o céu. 

Este tesouro de dados fornece aos cientistas a melhor sonda da evolução cósmica e ilumina o papel da matéria escura e da energia escura na formação da estrutura em grande escala do Universo. 

A DES começou em agosto de 2013. Em 27 de maio, a colaboração internacional publicou seu segundo lançamento de dados, cobrindo os primeiros três anos de observações. Os resultados são descritos em 30 artigos científicos, disponíveis no site do DES

“É um lindo conjunto de dados”, diz René Laureijs, cientista do projeto da missão Euclides da Agência Espacial Europeia.

Os novos resultados apoiam o modelo padrão ΛCDM, no qual o Universo é governado por 68,5% de energia escura (ou lambda, Λ) e 26,6% de matéria escura fria, ingredientes misteriosos que obscurecem amplamente os 4,9% restantes de matéria ordinária nas galáxias, estrelas, planetas e pessoas. 

Porém, há uma discrepância persistente: assim como outras pesquisas, o DES descobriu que o Universo atual é um pouco menos "desordenado" do que o modelo ΛCDM poderia prever. Ninguém sabe por quê. 

A verdadeira estrela da pesquisa é a enorme Câmera de Energia Escura de 570 megapixels, construída pelo Departamento de Energia do Fermilab em Chicago e montada no foco principal do Telescópio Blanco de 4 metros no Observatório Interamericano de Cerro Tololo, no Chile . 

Noite após noite, ela captou centenas de exposições de 90 segundos, cada uma com a largura de quatro luas cheias. Ao longo dos anos, toda a área de pesquisa de 5.000 graus quadrados foi fotografada pelo menos 10 vezes até uma magnitude limite de 23,3, enquanto dez campos profundos foram estudados repetidamente com ainda mais detalhes.

Com base no brilho de uma galáxia em cinco bandas de comprimento de onda na luz visível e infravermelha próxima, a equipe do DES pode determinar seu redshift fotométrico, que produz uma estimativa de distância aproximada, mas confiável. 

Assim, os astrônomos são capazes de discernir a evolução do agrupamento de galáxias ao longo da história do Universo, o que lança luz sobre as ações da matéria escura e da energia escura. 

As estimativas do chamado cisalhamento cósmico, distorções de forma diminutas devido a lentes gravitacionais fracas, fornecem informações adicionais sobre a distribuição da matéria escura. A elaborada análise de dados foi realizada no National Center for Supercomputer Applications da University de Illinois. 

Embora a exploração pela DES tenha sido concluída no início de 2019, os dados dos últimos três anos ainda estão sendo processados, e novos resultados surgiram em breve.

Enquanto isso, um levantamento espectroscópico de galáxias igualmente impressionante decolou oficialmente há algumas semanas no telescópio Mayall de 4 metros no Observatório Nacional Kitt Peak, no Arizona. O aparelho é similarmente denominado Dark Energy Spectroscopic Instrument, visa captar espectros de dezenas de milhões de galáxias e quasares nos próximos cinco anos. 

Com lançamento previsto para o final de 2022, a missão espacial Euclid irá realizar uma pesquisa ainda maior e mais profunda com objetivos cosmológicos semelhantes. O Euclid estudará cerca de 15 vezes mais galáxias do que o Dark Energy Survey fez, a distâncias de 10 bilhões de anos-luz, medindo seu brilho (focando no infravermelho) e tomando seu espectro. Realmente, é necessário uma precisão maior para validar definitivamente o modelo ΛCDM.

Fonte: Sky & Telescope

terça-feira, 11 de maio de 2021

Supernovas "gêmeas" auxiliam na cosmologia de precisão

Os cosmólogos descobriram uma maneira de duplicar a precisão da medição de distâncias até explosões de supernova, uma das suas ferramentas testadas e comprovadas para o estudo da misteriosa energia escura que está fazendo com que o Universo se expanda cada vez mais depressa.

© Observatório Las Cumbres (SN 2011fe na Galáxia do Cata-Vento)

Os resultados da colaboração Nearby Supernova Factory (SNfactory), liderada por Greg Aldering do Laboratório Nacional Lawrence Berkeley (Berkeley Lab) do Departamento de Energia dos EUA, permitirão aos cientistas estudar a energia escura com precisão e exatidão bastante aprimoradas e fornecer uma verificação cruzada poderosa da técnica através de vastas distâncias e do tempo.

As descobertas também serão fundamentais para as próximas experiências cosmológicas que vão usar novos telescópios terrestres e espaciais para testar explicações alternativas da energia escura. 

As supernovas foram usadas em 1998 para fazer a surpreendente descoberta de que a expansão do Universo está acelerando, ao invés de desacelerar como era esperado. Esta aceleração - atribuída à energia escura que compõe dois-terços de toda a energia no Universo - foi desde então confirmada por uma variedade de técnicas independentes, bem como por estudos mais detalhados de supernovas.

A descoberta da energia escura dependeu da utilização de uma classe específica de supernovas, as do Tipo Ia. Estas supernovas explodem sempre com quase o mesmo brilho máximo intrínseco. Dado que o brilho máximo observado da supernova é usado para inferir a sua distância, as pequenas variações restantes no brilho máximo intrínseco limitaram a precisão com a qual a energia escura podia ser testada.

Apesar de 20 anos de melhorias por muitos grupos, os estudos da energia escura por meio de supernovas até agora permaneceram limitados por estas variações. Os novos resultados anunciados pela colaboração SNfactory vêm de um estudo de vários anos dedicado inteiramente para aumentar a precisão das medições cosmológicas feitas com supernovas.

A medição da energia escura requer comparações dos brilhos máximos de supernovas distantes a bilhões de anos-luz de distância com os de supernovas próximas a "apenas" 300 milhões de anos-luz de distância.

A equipe estudou centenas destas supernovas próximas com detalhes requintados. Cada supernova foi medida várias vezes, em intervalos de alguns dias. Cada medição examinou o espectro da supernova, registrando a sua intensidade em toda a gama de comprimentos de onda da luz visível. 

Um instrumento feito sob medida para esta pesquisa, o SNIFS (SuperNova Integral Field Spectrometer), instalado no telescópio de 2,2 metros da Universidade do Havaí em Maunakea, foi usado para medir os espectros.

"Há muito tempo que temos esta ideia de que, se a física da explosão de duas supernovas fosse a mesma, os seus brilhos máximos seriam os mesmos. Usando os espectros da colaboração SNfactory como uma espécie de tomografia computorizada da explosão de supernova, pudemos testar esta ideia," disse Saul Perlmutter, laureado com o Prêmio Nobel de Física em 2011, cientista sênior do Berkeley Lab e professor da Universidade da Califórnia

De fato, há vários anos a física Hannah Fakhouri, na ocasião uma estudante que trabalhava com Perlmutter, fez uma descoberta chave para os resultados de hoje. Olhando para uma variedade de espectros obtidos pela colaboração SNfactory, ela descobriu que, em vários casos, os espectros de duas supernovas diferentes pareciam quase idênticos. Entre as cerca de 50 supernovas, algumas eram gêmeas virtualmente idênticas. Quando os espectros ondulantes de um par de gêmeas foram sobrepostos, a olho nu parecia haver apenas uma única impressão. 

A análise atual baseia-se nesta observação para modelar o comportamento das supernovas no período de tempo perto do seu brilho máximo. O novo trabalho quase quadruplica o número de supernovas usadas na análise. Isto tornou a amostra grande o suficiente para aplicar técnicas de aprendizagem de máquina e identificar estas gêmeas, levando à descoberta de que os espectros das supernovas do Tipo Ia variam de apenas três maneiras. Os brilhos intrínsecos das supernovas também dependem principalmente destas três diferenças observadas, tornando possível a medição das distâncias das supernovas com uma incrível precisão de cerca de 3%. 

Dado que as galáxias próximas são um pouco diferentes das distantes, havia uma séria preocupação de que tal dependência produzisse leituras falsas na medição da energia escura. Agora, esta preocupação pode ser bastante reduzida medindo supernovas distantes com esta nova técnica. 

A medição convencional de distâncias de supernovas usa curvas de luz, ou seja, imagens obtidas em várias cores conforme uma supernova se ilumina e desvanece. Ao invés, foi usado um espectro de cada supernova. Estes são muito mais detalhados e, com as técnicas de aprendizagem de máquina, tornou-se possível discernir o comportamento complexo que era fundamental para medir distâncias mais precisas.

Os resultados vão beneficiar duas grandes experiências futuras. A primeira será no Observatório Vera Rubin de 8,4 metros, em construção no Chile, com o seu levantamento LSST (Legacy Survey of Space and Time). O segundo é o futuro telescópio espacial Nancy Grace Roman da NASA. Estes telescópios vão medir milhares de supernovas para melhorar ainda mais a medição da energia escura. Serão capazes de comparar os seus resultados com medições feitas usando técnicas complementares.

Estas descobertas são relatadas em dois artigos publicados no periódico The Astrophysical Journal.

Fonte: Lawrence Berkeley National Laboratory

domingo, 21 de julho de 2019

O que são buracos negros de massa intermediária?

Os buracos negros são objetos muito densos que contêm tanta matéria aprisionada em um volume tão pequeno que sua gravidade é forte o suficiente para impedir que até mesmo a luz escape de suas superfícies.


© B. Kiziltan/T. Karacan (ilustração de buraco negro de massa intermediária)

Embora a primeira previsão de um buraco negro tenha sido feita há quase 250 anos pelo filósofo e clérigo inglês John Michell, o primeiro candidato ao buraco negro, Cygnus X-1, só foi descoberto em 1971.

Nas últimas décadas, os astrônomos compilaram muitas evidências da existência de buracos negros em ambas as extremidades do espectro de massa. Pesquisadores descobriram pequenos buracos negros que pesam apenas até 100 vezes a massa do Sol, bem como buracos negros supermassivos que podem atingir bilhões de vezes a massa de seus irmãos de tamanho estelar.

Acredita-se que os buracos negros de massa estelar se formam quando uma estrela relativamente massiva morre de forma espetacular. Enquanto a estrela exausta queima seus traços finais de combustível, sua imensa gravidade faz com que ela desmorone sobre si mesma. Se a estrela em colapso não for muito grande, o material ressalta o núcleo denso da estrela. Isso causa uma explosão de supernova, geralmente deixando para trás uma minúscula anã branca ou uma estrela de nêutrons. Mas se o remanescente sobrevivente for maior do que cerca de três massas solares, nem mesmo os nêutrons bem compactados podem impedir que o núcleo do tamanho de uma cidade continue a coalescer em um buraco negro de massa estelar.

Por outro lado, existe também uma classe de buracos negros conhecidos como buracos negros supermassivos, que servem como âncoras gravitacionais centrais da maioria, se não de todas, grandes galáxias. Embora os buracos negros supermassivos estejam entre milhões e bilhões de vezes a massa do Sol, eles carregam toda esta matéria em uma região aproximadamente do tamanho de uma única estrela. Existem muitas linhas de evidência que indicam que estes gigantes cósmicos são comuns em todo o Universo, mas exatamente como e quando eles se formaram ainda permanece um mistério.

Mas, também não deveria existir uma classe de buracos negros de tamanho intermediário que dividem a diferença entre buracos negros de massa estelar e supermassivos? Estes pesos médios cósmicos, que variam de cerca de 100 a 1 milhão de massas solares, são referidos como buracos negros de massa intermediária. E embora os astrônomos tenham encontrado vários candidatos de buracos negros de massa intermediária convincentes espalhados pelo Universo, ainda não se sabe se eles realmente existem. No entanto, a evidência está começando a se acumular.

Embora a prova conclusiva dos buracos negros de massa intermediária continue indefinida, nas últimas décadas, tem havido uma série de estudos que revelaram evidências intrigantes indicando a existência destes buracos negros.

Por exemplo, em 2003, os pesquisadores usaram o observatório espacial XMM-Newton da ESA para identificar duas fontes de raios X distintas na galáxia NGC 1313. Porque os buracos negros tendem a engolir ferozmente materiais que ficam muito próximos e expelem alta radiação de energia, eles são alguns dos mais fortes emissores conhecidos de raios X. E ao identificar as fontes de raios X da NGC 1313 e estudar como elas periodicamente brilham, em 2015, os pesquisadores conseguiram restringir a massa de um dos suspeitos buracos negros da galáxia, conhecida como NGC 1313 X-1. Eles calcularam que possui cerca de 5.000 vezes a massa do Sol, o que o colocaria firmemente na faixa de massa de um buraco negro de massa intermediária.

Da mesma forma, em 2009, os pesquisadores descobriram evidências ainda mais fortes da existência de um buraco negro de tamanho médio. Localizado a cerca de 290 milhões de anos-luz de distância perto da borda da galáxia ESO 243-49, a equipe observou uma fonte de raios X incrivelmente brilhante chamada HLX-1 (fonte de raios X hiperluminosa 1) que não tinha uma contrapartida óptica.

Isto sugere que o objeto não é simplesmente uma estrela ou uma galáxia de fundo. Além disso, os pesquisadores descobriram que a assinatura de raios X do HLX-1 variou com o tempo, sugerindo que um buraco negro está brilhando cada vez que uma estrela próxima faz uma aproximação, alimentando gás para o buraco negro e causando breves explosões de raios X que então desaparecem lentamente. Com base nos brilhos observados, os pesquisadores calcularam uma massa mínima do buraco negro de cerca de 500 vezes a massa do Sol, embora algumas estimativas coloquem seu peso mais próximo de 20.000 massas solares.

Mais recentemente, astrônomos começaram a descobrir fortes evidências de buracos negros intermediários perto do núcleo da Via Láctea. Por exemplo, em janeiro de 2019, astrônomos usaram o ALMA (Atacama Large Millimeter/submillimeter Array) para traçar correntes de gás que orbitam um buraco negro de massa intermediária, com uma massa aparente de aproximadamente 32.000 vezes a massa do Sol.

Localizado a escassos 23 anos-luz do buraco negro supermassivo da Via Láctea, Sagitário A*, a descoberta sugere que o recém-descoberto buraco negro de massa intermediária poderia fundir-se com os cerca de 4 milhões de massa solar do Sagitário A* num futuro não muito distante.

Os recentes sucessos do projeto de ondas gravitacionais LIGO-Virgo, que identificou 20 buracos negros de massa estelar sondando o Universo em busca de ondas gravitacionais que são produzidas quando os buracos negros se fundem, proporcionou aos pesquisadores um novo método para procurar pequenos e médios buracos negros.

Embora a colaboração LIGO-Virgo ainda não tenha descoberto ondas gravitacionais de fusões entre buracos negros maiores que cerca de 40 massas solares, futuramente, com a melhoria na sensibilidade dos detectores de ondas gravitacionais haverá uma melhor compreensão da frequência das fusões dos buracos negros de massa intermediária. A terceira corrida de observação começou a coletar dados a partir de 1º de abril de 2019, e os cientistas de ondas gravitacionais estão muito esperançosos em observar estas fontes indescritíveis em breve!

Portanto, nos próximos anos será possível encontrar uma prova definitiva do elo perdido entre os buracos negros pequenos e superdimensionados.

Fonte: Astronomy