terça-feira, 5 de julho de 2022

Captando o início da rotação galáctica no Universo primitivo

Uma equipe internacional observou sinais de rotação numa galáxia que existia no início do Universo apenas 500 milhões de anos após o Big Bang.

© NAOJ (ilustração de MACS1149-JD1)

Esta galáxia é, de longe, a mais antiga com uma assinatura de rotação. A sua velocidade de rotação é de apenas 50 quilômetros por segundo, em comparação com 220 quilômetros por segundo para a Via Láctea, indicando que a galáxia ainda se encontra numa fase inicial de desenvolvimento de movimento de rotação. 

Esta descoberta pode levar a uma melhor compreensão da formação galáctica no Universo inicial. À medida que os telescópios se tornam mais avançados e poderosos, os astrônomos são capazes de detectar cada vez mais galáxias distantes. Devido à expansão do Universo, estas galáxias estão se afastando cada vez mais de nós. Isto faz com que as suas emissões tenham um desvio para o vermelho, ou seja, comprimentos de onda mais longos.

Curiosamente, podemos estimar a rapidez com que uma galáxia se move e, por sua vez, quando foi formada, com base no aspeto do desvio da emissão. O ALMA (Atacama Large Millimeter Array) é particularmente adequado para a observação de tais desvios para o vermelho na emissão galáctica. 

Os astrônomos observaram emissões de uma galáxia distante chamada MACS1149-JD1 (JD1, para abreviar), o que os levou a algumas conclusões interessantes. A formação das galáxias começa com a acumulação de gás e prossegue com a formação estelar a partir deste gás. Com o tempo, a formação estelar progride do centro para fora, desenvolve-se um disco galáctico e a galáxia adquire uma forma particular. À medida que a formação estelar continua, novas estrelas formam-se no disco giratório, enquanto estrelas mais antigas permanecem na parte central.

É possível determinar a fase evolutiva da galáxia através do estudo da idade dos objetos estelares e do movimento das estrelas e do gás. A equipe mediu com sucesso pequenas diferenças no desvio para o vermelho de posição para posição dentro da galáxia, mostrando que JD1 satisfazia o critério de uma galáxia dominada pela rotação. 

Além da velocidade, a equipe também mediu que o diâmetro de JD1 é de apenas 3.000 anos-luz, muito menor que a Via Láctea, que tem 100.000 anos-luz de diâmetro. A galáxia observada é, de longe, a fonte mais distante até agora encontrada que tem um disco giratório. 

Juntamente com medições semelhantes de sistemas mais próximos na literatura, isto permitiu à equipa delinear o desenvolvimento gradual de galáxias giratórias ao longo de mais de 95% da nossa história cósmica. Além disso, a massa estimada a partir da velocidade de rotação está de acordo com a massa estelar estimada anteriormente a partir da assinatura espectral e provém predominantemente das estrelas "maduras" que se formaram cerca de 300 milhões de anos antes.

A velocidade de rotação de JD1 é muito mais baixa do que as encontradas em galáxias em épocas posteriores e na Via Láctea, e JD1 está provavelmente numa fase inicial de desenvolvimento de um movimento de rotação.

Com o recentemente lançado telescópio espacial James Webb, a equipe planeja agora identificar a localização de estrelas jovens e mais velhas na galáxia para refinar o seu cenário de formação. 

Um artigo foi publicado no periódico The Astrophysical Journal Letters

Fonte: National Astronomical Observatory of Japan

segunda-feira, 4 de julho de 2022

Espiando uma joia galáctica

Esta observação do telescópio espacial Hubble captou a galáxia CGCG 396-2, uma fusão incomum de galáxias que fica a cerca de 520 milhões de anos-luz da Terra na constelação de Órion.

© Hubble (galáxia CGCG 396-2)

Esta imagem é uma joia do projeto Galaxy Zoo, um projeto de ciência cidadã no qual centenas de milhares de voluntários classificaram galáxias para ajudar os cientistas a resolver um problema de proporções astronômicas, como classificar as vastas quantidades de dados gerados por telescópios robóticos. 

Após uma votação pública, uma seleção dos objetos mais intrigantes astronomicamente do Galaxy Zoo foram selecionados para observações de acompanhamento com o telescópio espacial Hubble. A galáxia CGCG 396-2 é um destes objetos e foi captada nesta imagem pela Advanced Camera for Surveys do Hubble. 

O projeto Galaxy Zoo se originou quando um astrônomo recebeu uma tarefa impossivelmente entorpecedora; classificar mais de 900.000 galáxias a olho nu. Ao criar uma interface da web e convidar cientistas cidadãos para contribuir com o desafio, a equipe do Galaxy Zoo conseguiu reunir a análise e, em seis meses, uma legião de 100.000 astrônomos cidadãos voluntários contribuíram com mais de 40 milhões de classificações de galáxias. 

Desde seu sucesso inicial, o projeto Galaxy Zoo e seus projetos sucessores contribuíram para mais de 100 artigos científicos revisados por pares e levaram a uma rica variedade de descobertas astronômicas intrigantes acima e além de seus objetivos iniciais. O sucesso do projeto também inspirou mais de 100 projetos de ciência cidadã no portal Zooniverse, desde a análise de dados da visita da sonda Rosetta da ESA ao cometa 67P/Churyumov–Gerasimenko até a contagem de orcas nas ilhas remotas do Alasca! 

Para mais detalhes acesse o projeto Galaxy Zoo.

Fonte: ESA

sexta-feira, 1 de julho de 2022

Observando a morte de uma rara estrela gigante

Uma equipe de astrônomos liderada pela Universidade do Arizona criou uma imagem tridimensional e detalhada de uma estrela hipergigante moribunda.

© NASA (ilustração de uma estrela hipergiante vermelha)

Os astrônomos traçaram a distribuição, direções e velocidades de uma variedade de moléculas em torno de uma estrela hipergigante vermelha conhecida como VY Canis Majoris (VY CMa). As suas descobertas oferecem perspetivas a uma escala sem precedentes sobre os processos que acompanham a morte de estrelas gigantes. 

As estrelas supergigantes extremas, conhecidas também como hipergigantes, são muito raras, sendo que apenas algumas conhecidas existem na Via Láctea. Exemplos incluem Betelgeuse, a segunda estrela mais brilhante da constelação de Órion, e NML Cygni, também conhecida como V1489 Cygni, na direção da constelação de Cisne.

Ao contrário das estrelas com massas mais baixas, que são mais propensas a inchar quando entram na fase de gigante vermelha, mas geralmente mantêm uma forma esférica, as hipergigantes tendem a passar por substanciais eventos de perda de massa que formam estruturas complexas e altamente irregulares compostas por arcos, aglomerados e nós.

Localizada a cerca de 3.009 anos-luz da Terra, a VY CMa, é uma estrela variável pulsante na direção da constelação de Cão Maior. Abrangendo entre 10.000 e 15.000 UA (Unidade Astronômica, é a distância média entre a Terra e o Sol, cerca de 150 milhões de quilômetros), a VY CMa é possivelmente a estrela mais massiva da Via Láctea. A equipe optou por estudar VY CMa porque é um dos melhores exemplos destes tipos de estrelas. 

Imagens anteriores de VY CMa com o telescópio espacial Hubble e espectroscopia mostraram a presença de arcos distintos e outros aglomerados e nós, muitos estendendo-se milhares de UA a partir da estrela central. Para descobrir mais detalhes dos processos pelos quais as estrelas hipergigantes terminam as suas vidas, foram analisadas certas moléculas em torno da hipergigante e mapeadas em imagens pré-existentes da poeira, obtidas pelo telescópio espacial Hubble. 

A equipe usou o ALMA (Atacama Large Millimeter Array) no Chile para rastrear uma variedade de moléculas de material ejetado a partir da superfície estelar. Enquanto algumas observações ainda estão em curso, foram obtidos mapas preliminares do óxido de enxofre, dióxido de enxofre, óxido de silício, óxido de fósforo e cloreto de sódio. A partir destes dados, o grupo construiu uma imagem da estrutura do fluxo global molecular de VY CMa em escalas que englobavam todo o material ejetado a partir da estrela.

As moléculas traçam os arcos no invólucro, o que implica que as moléculas e a poeira estão bem misturadas. As emissões de moléculas em comprimentos de onda de rádio fornecem informação da velocidade, em oposição à emissão de poeira, que é estática. Ao mover as 48 antenas do ALMA para diferentes configurações, os pesquisadores conseguiram obter dados sobre as direções e velocidades das moléculas e mapeá-las através das diferentes regiões do invólucro da hipergigante com considerável detalhe, correlacionando-as mesmo com diferentes eventos de ejeção de massa ao longo do tempo.

Fonte: University of Arizona

sábado, 25 de junho de 2022

Identificada possível fonte da calota vermelha de Caronte

Cientistas do SwRI (Southwest Research Institute) combinaram dados da missão New Horizons da NASA com novas experiências laboratoriais e modelagem exosférica para revelar a provável composição da calota avermelhada da lua de Plutão, Caronte, e como esta pode ter sido formada.

© NASA / SwRI (Caronte)

Esta primeira descrição da atmosfera dinâmica de metano de Caronte, utilizando novos dados experimentais, fornece um fascinante vislumbre das origens da zona vermelha no polo norte da lua.

Logo após o encontro de 2015, os cientistas da New Horizons propuseram que um material avermelhado "semelhante a tolinas" no polo de Caronte pudesse ser sintetizado por luz ultravioleta, quebrando as moléculas de metano. Estas são capturadas depois de escaparem de Plutão e então congeladas nas regiões polares da lua durante as suas longas noites de inverno. As tolinas são resíduos orgânicos pegajosos formados por reações químicas alimentadas pela luz, neste caso o brilho ultravioleta de Lyman-alpha espalhado por átomos de hidrogênio interplanetários.

"As nossas descobertas indicam que os drásticos surtos sazonais na fina atmosfera de Caronte, bem como a luz que decompõe a geada de metano, são fundamentais para compreender as origens da zona polar vermelha de Caronte," disse o Dr. Ujjwal Raut do SwRI.

A equipe replicou realisticamente as condições da superfície de Caronte no CLASSE (Center for Laboratory Astrophysics and Space Science Experiments) do SwRI para medir a composição e a cor dos hidrocarbonetos produzidos no hemisfério de inverno de Caronte, à medida que o metano congela sob o brilho ultravioleta. A equipe inseriu as medições num novo modelo atmosférico de Caronte para mostrar a decomposição do metano em resíduos na mancha polar norte de Caronte.

Os cientistas do SwRI desenvolveram uma nova simulação de computador para modelar a fina atmosfera de metano de Caronte. O modelo aponta para pulsações sazonais "explosivas" na atmosfera de Caronte devido a mudanças extremas nas condições ao longo da grande viagem de Plutão em torno do Sol. 

Os resultados das experiências do SwRI foram introduzidos no modelo atmosférico para estimar a distribuição de hidrocarbonetos complexos emergentes da decomposição do metano sob a influência da luz ultravioleta. O modelo tem zonas polares que geram principalmente etano, um material incolor que não contribui para uma cor avermelhada. 

O etano é menos volátil do que o metano e permanece congelado à superfície de Caronte muito depois do nascer-do-Sol da primavera. A exposição ao vento solar pode converter o etano em depósitos persistentes na superfície avermelhada que contribuem para a calota vermelha de Caronte.

Os resultados foram publicados em dois artigos: no periódico Geophysical Research Letters e na revista Science Advances.

Fonte: Southwest Research Institute

sexta-feira, 24 de junho de 2022

Novas imagens revelam características ocultas em galáxias

Novas imagens utilizando dados de missões da ESA e da NASA mostram a poeira que preenche o espaço entre as estrelas em quatro das galáxias mais próximas da Via Láctea.

© STScI (Grande Nuvem de Magalhães)

A imagem mostra a Grande Nuvem de Magalhães, que é um satélite da Via Láctea, contendo cerca de 30 bilhões de estrelas. Vista aqui no infravermelho distante e no rádio, a poeira fria e quente da Grande Nuvem de Magalhães é mostrada em verde e azul, respectivamente, com o gás hidrogênio em vermelho.

Mais do que impressionantes, as fotos são também um tesouro científico, dando uma ideia de como a densidade das nuvens de poeira pode variar drasticamente dentro de uma galáxia. 

Com uma consistência semelhante à da fumaça, a poeira é criada por estrelas moribundas e é um dos materiais que formam novas estrelas. As nuvens de poeira observadas pelos telescópios espaciais são constantemente moldadas pela explosão de estrelas, ventos estelares e pelos efeitos da gravidade. Quase metade de toda a luz das estrelas no Universo é absorvida pela poeira.

Muitos dos elementos químicos pesados essenciais à formação de planetas como a Terra estão presos em grãos de poeira no espaço interestelar. Assim, a compreensão da poeira é uma parte essencial da compreensão do nosso Universo. 

As novas observações foram possíveis através do trabalho do Observatório Espacial Herschel da ESA, que operou de 2009 a 2013. O Jet Propulsion Laboratory (JPL) da NASA, contribuiu com dois instrumentos na nave espacial. Os instrumentos superfrios do Herschel foram capazes de detectar o brilho térmico da poeira, que é emitido como luz infravermelha distante, uma gama de comprimentos de onda mais longos do que o que os olhos humanos conseguem detectar. 

As imagens da poeira interestelar, pelo Herschel, fornecem vistas de alta resolução de detalhes finos nestas nuvens, revelando intricadas subestruturas. Mas a forma como o telescópio espacial foi concebido significava que muitas vezes não conseguia detectar a luz de nuvens mais espalhadas e difusas, especialmente nas regiões exteriores das galáxias, onde o gás e a poeira se tornam esparsos e, portanto, mais tênues.

Para algumas galáxias próximas, isso significava que o Herschel perdia até 30% de toda a luz emitida pela poeira. Com uma lacuna tão significativa, os astrônomos esforçavam-se por utilizar os dados do Herschel para compreender como a poeira e o gás se comportavam nestes ambientes. 

Para preencher os mapas de poeira do Herschel, as novas imagens combinam dados de três outras missões: o aposentado Observatório Planck da ESA, juntamente com duas missões da NASA igualmente reformadas, o IRAS (Infrared Astronomical Satellite) e o COBE (Cosmic Background Explorer). 

As imagens mostram a Galáxia de Andrômeda, também conhecida como M31; a galáxia do Triângulo, ou M33; e a Grande e Pequena Nuvem de Magalhães, que são galáxias anãs que orbitam a Via Láctea que não têm a estrutura espiral. Todas as quatro estão a menos de 3 milhões de anos-luz da Terra. Nas imagens, o vermelho indica o gás hidrogênio, o elemento mais comum no Universo. 

Estes dados foram recolhidos utilizando múltiplos radiotelescópios localizados em todo o globo. A imagem da Grande Nuvem de Magalhães mostra uma cauda vermelha saindo em baixo e à esquerda, que foi provavelmente criada quando colidiu com a Pequena Nuvem de Magalhães há cerca de 100 milhões de anos. 

As bolhas de espaço vazio indicam regiões onde as estrelas se formaram recentemente, porque ventos intensos das estrelas recém-nascidas sopram a poeira e o gás circundantes. A luz verde à volta das orlas destas bolhas indica a presença de poeira fria que se acumulou como resultado destes ventos. A poeira mais quente, vista a azul, indica onde as estrelas estão se formando ou outros processos que aqueceram a poeira. 

Muitos elementos pesados na natureza, incluindo carbono, oxigênio e ferro, podem ficar presos a grãos de poeira e a presença de elementos diferentes muda a forma como a poeira absorve a luz das estrelas. Isto, por sua vez, afeta a visão de eventos como a formação estelar. Nas nuvens mais densas de poeira, quase todos os elementos pesados podem ficar presos em grãos de poeira, o que aumenta a relação poeira-gás. Mas em regiões menos densas, a radiação destrutiva das estrelas recém-nascidas ou as ondas de choque da explosão de estrelas esmaga os grãos de poeira e devolve alguns destes elementos pesados trancados de volta ao gás, alterando mais uma vez a proporção.

Os cientistas que estudam o espaço interestelar e a formação estelar querem compreender melhor este ciclo contínuo. As imagens do Herschel mostram que a relação poeira-gás pode variar dentro de uma única galáxia até um fator de 20, muito mais do que anteriormente estimado.

Fonte: Jet Propulsion Laboratory

quinta-feira, 23 de junho de 2022

Descoberto um novo sistema planetário próximo

Astrônomos de várias instituições descobriram um novo sistema planetário na nossa vizinhança solar situado a apenas 10 parsecs, ou cerca de 33 anos-luz, da Terra, tornando-o um dos sistemas multiplanetários conhecidos mais próximos do nosso.

© IAC (ilustração de duas Super-Terras)

Na região central do sistema encontra-se uma pequena e fria estrela anã M, chamada HD 260655, que abriga pelo menos dois planetas do tamanho da Terra. Os mundos rochosos provavelmente não são habitáveis, pois as suas órbitas são relativamente íntimas, expondo os planetas a temperaturas demasiado elevadas para sustentar água líquida à superfície. No entanto, os cientistas estão entusiasmados com este sistema porque a proximidade e o brilho da sua estrela vão dar-lhes uma visão mais detalhada das propriedades dos planetas e dos sinais de qualquer atmosfera que possam conter. 

O novo sistema planetário foi inicialmente detectado pelo TESS (Transiting Exoplanet Survey Satellite) da NASA, uma missão liderada pelo Massachusetts Institute of Technology (MIT) que foi concebida para observar as estrelas mais próximas e brilhantes e detectar quedas periódicas na luz, quedas estas que poderiam assinalar a passagem de um planeta.

Em outubro de 2021, astrônomos estavam monitorando os dados transmitidos pelo TESS quando reparou num par de mergulhos periódicos na luz estelar, ou trânsitos, na estrela HD 260655. Os mesmos sinais também foram encontrados independentemente pelo SPOC (Science Processing Operations Center), no Centro Espacial Ames da NASA. 

Os cientistas normalmente fazem observações de acompanhamento, com outros telescópios, para confirmar que os objetos são de fato planetas. O processo de classificação e posterior confirmação de novos planetas pode muitas vezes demorar vários anos. 

A HD 260655 também estava listada num levantamento de estrelas realizado pelo HIRES (High Resolution Echelle Spectrometer), um instrumento que opera como parte do Observatório Keck no Havaí e pelo CARMENES, um instrumento que funciona como parte do Observatório de Calar Alto na Espanha. Ambos os levantamentos medem a oscilação gravitacional de uma estrela, também conhecida como velocidade radial. Cada planeta em órbita de uma estrela vai exercer uma pequena atração gravitacional na sua estrela.

A partir dos dois conjuntos de dados de arquivo, os investigadores encontraram sinais estatisticamente significativos de que os sinais detectados pelo TESS eram dois planetas em órbita. A equipe analisou então mais de perto os dados do TESS para determinar as propriedades de ambos os planetas, incluindo os períodos orbitais e tamanhos. Determinaram que o planeta interior, chamado HD 260655b, orbita a estrela a cada 2,8 dias e é cerca de 1,2 vezes maior que a Terra. O segundo planeta exterior, HD 260655c, completa uma órbita a cada 5,7 dias e tem 1,5 vezes o tamanho da Terra.

A partir dos dados de velocidade radial do HIRES e do CARMENES, os cientistas conseguiram calcular a massa dos planetas, que está diretamente relacionada com a amplitude pela qual cada planeta "puxa" a estrela. Descobriram que o planeta interior tem cerca do dobro da massa da Terra, enquanto que o planeta exterior tem cerca de três massas terrestres. A partir do seu tamanho e massa, a equipa estimou a densidade de cada planeta. O planeta interior, menor, é ligeiramente mais denso do que a Terra, enquanto que o planeta exterior, maior, é um pouco menos denso. 

Ambos os exoplanetas, com base na sua densidade, são provavelmente terrestres, ou rochosos em termos de composição. Os pesquisadores também estimam, com base nas suas órbitas curtas, que a superfície do planeta interior tem uma temperatura de cerca de 710 K, enquanto o planeta exterior é aproximadamente 560 K.

Em estrelas pequenas como esta, espera-se que existam mais planetas.

Fonte: Instituto de Astrofísica de Canarias

terça-feira, 21 de junho de 2022

Encontradas evidências do mais poderoso pulsar em galáxia distante

Astrônomos que analisavam dados do VLASS (VLA Sky Survey) descobriram uma das estrelas de nêutrons mais jovens conhecidas, o remanescente superdenso de uma estrela massiva que explodiu como uma supernova.

© NRAO / M. Weiss (ilustração de nebulosa de vento pulsar)

As imagens do VLA (Karl G. Jansky Very Large Array) indicam que a emissão brilhante de rádio alimentada pelo campo magnético do pulsar giratório só recentemente surgiu por detrás de uma densa concha de detritos da explosão de supernova. 

O objeto, chamado VT 1137-0337, encontra-se numa galáxia anã a 395 milhões de anos-luz da Terra. Apareceu pela primeira vez numa imagem VLASS feita em janeiro de 2018. Não apareceu numa imagem da mesma região feita pelo levantamento FIRST do VLA em 1998. Continuou aparecendo em observações VLASS posteriores em 2018, 2019, 2020 e 2022.

Este objeto provavelmente é uma nebulosa de vento pulsar, que é criada quando o poderoso campo magnético de uma estrela de nêutrons em rápida rotação acelera as partículas carregadas ao redor até quase à velocidade da luz.

Os cientistas descobriram o objeto em dados do VLASS, um projeto do NRAO que começou em 2017 para pesquisar todo o céu visível a partir do VLA, cerca de 80% do céu. Ao longo de um período de sete anos, o VLASS está realizando uma varredura completa do céu três vezes, sendo um dos objetivos o de encontrar objetos transitórios.

Os astrônomos encontraram VT 1137-0337 na primeira varredura VLASS de 2018. Comparando esta análise VLASS com dados de um levantamento anterior do VLA, chamado FIRST, revelou 20 objetos transientes particularmente luminosos que poderiam estar associados a galáxias conhecidas.

A galáxia, chamada SDSS J113706.18-033737.1, é uma galáxia anã contendo cerca de 100 milhões de vezes a massa do Sol. Ao estudar as características de VT 1137-0337, os astrônomos consideraram várias explicações possíveis, incluindo uma supernova, um GRB (Gamma Ray Burst) ou um evento de ruptura de maré em que uma estrela é triturada por um buraco negro supermassivo.

Os pesquisadores concluíram que a melhor explicação é uma nebulosa de vento pulsar. Neste cenário, uma estrela muito mais massiva do que o Sol explodiu como supernova, deixando para trás uma estrela de nêutrons. A maior parte da massa da estrela original foi expelida para fora como uma concha de destroços. A estrela de nêutrons gira rapidamente e à medida que o seu poderoso campo magnético varre o espaço circundante, acelera as partículas carregadas, provocando uma forte emissão de rádio. Inicialmente, a emissão de rádio foi bloqueada pela concha de detritos da explosão. À medida que este invólucro se expandia, tornou-se progressivamente menos denso até que eventualmente as ondas de rádio da nebulosa de vento pulsar puderam passar através dele.

O exemplo mais famoso de uma nebulosa de vento pulsar é a Nebulosa do Caranguejo (M1) na direção da constelação de Touro, o resultado de uma supernova que brilhou intensamente no ano 1054. A M1 é facilmente visível hoje em dia através de telescópios pequenos. O objeto que foi encontrado parece ser aproximadamente 10.000 vezes mais energético do que a Nebulosa do Caranguejo, com um campo magnético mais forte. 

É possível que o campo magnético do VT 1137-0337 seja suficientemente forte para que a estrela de nêutrons se qualifique como um magnetar. Os magnetares são um dos principais candidatos à origem dos misteriosos FRBs (Fast Radio Bursts), agora sob intenso estudo.

Verificou-se que alguns FRBs foram associados a fontes de rádio persistentes, cuja natureza também é um mistério. Têm fortes semelhanças, nas suas propriedades, com VT 1137-0337, mas não mostraram evidências de uma forte variabilidade. 

Os astrônomos planejam fazer observações adicionais para aprender mais sobre o objeto e para monitorar o seu comportamento ao longo do tempo. 

Fonte: National Radio Astronomy Observatory

segunda-feira, 20 de junho de 2022

Uma estranha anã branca com um passado caótico

O que é mais estranho do que pedras caindo sobre uma estrela anã branca quente? Adicionando pedaços de gelo à mistura.

© STScI/Joseph Olmsted (anã branca acumulando detritos de objetos)

A G238-44, uma pequena anã branca situada a 86 anos-luz de distância, está acumulando dois tipos muito diferentes de objetos simultaneamente.

As anãs brancas são os restos compactos de estrelas de baixa massa que primeiro se transformam em gigantes vermelhas, um destino que aguarda nosso próprio Sol daqui a cerca de 5 bilhões de anos. A fase gigante vermelha causa estragos em sistemas planetários ordenados. Os planetas próximos podem ser devorados, enquanto as órbitas de mundos mais distantes ficam caóticas. Depois que a estrela gigante explode suas camadas externas em uma nebulosa planetária, uma anã branca do tamanho da Terra (mas ainda com massa solar) permanece.

Observações de muitas anãs brancas mostram sinais de “poluição” atmosférica: quantidades inesperadas de elementos mais pesados ​​que o hélio. Sua existência indica que quando colisões interrompem as órbitas de corpos semelhantes a asteroides no sistema de anãs brancas, seus detritos rochosos chovem sobre a estrela. 

Então, o que há de tão estranho na G238-44? 

É a composição química da poluição em sua superfície, medida pelo Far Ultraviolet Spectroscopic Explorer (FUSE) da NASA, o Keck Telescope no Havaí e o telescópio espacial Hubble. 

As abundâncias relativas de 10 elementos pesados ​​(carbono, nitrogênio, oxigênio, magnésio, alumínio, silício, fósforo, enxofre, cálcio e ferro) não correspondem à composição de nenhum objeto conhecido do Sistema Solar. O material que cai sobre a anã branca é melhor descrito como quase duas partes de detritos semelhantes a Mercúrio, ou seja, material rochoso típico, e uma parte de material semelhante aos objetos gelados do Cinturão de Kuiper nos arredores do Sistema Solar. 

As descobertas sugerem que o sistema planetário da estrela experimentou uma enorme quantidade de caos orbital, o que teria lançado corpos gelados remotos para dentro. Esta é a única maneira de estudar a composição interior de pequenos corpos em outros sistemas solares. No entanto, as observações possam ser explicadas por um objeto desintegrado, contendo metal, rocha e gelo, como o planeta anão Ceres.

O objeto poderia ter sido uma super-Terra rica em água ou um mini-Netuno gasoso? Estes dois tipos de planetas estão ausentes em nosso próprio Sistema Solar, mas abundantes em outras partes do Universo.

Os astrônomos afirmam que não há como acabar com as quantidades relativas observadas de ferro, oxigênio, carbono e nitrogênio em um único corpo. Além disso, a quantidade de poluição é muito pequena para vir da ruptura de um planeta. A massa total de elementos pesados ​​medidos é muito menor que a massa da Terra, e a falta de um excesso de radiação infravermelha ao redor da anã branca indica que não há uma grande quantidade de material circunstelar. 

Com apenas uma anã branca mostrando “abundâncias estranhas”, é difícil tirar conclusões definitivas. Observações futuras podem render casos adicionais.

Fonte: Sky & Telescope

domingo, 19 de junho de 2022

A fase crítica da evolução das primeiras galáxias

Cientistas usaram o ALMA (Atacama Large Millimeter/submillimeter Array) para observar uma quantidade significativa de gás frio e neutro nas regiões exteriores da jovem galáxia A1689-zD1, bem como fluxos de gás quente provenientes do centro da galáxia.

© B. Saxton (ilustração de jovem galáxia)

Estes resultados podem fornecer informações sobre uma fase crítica da evolução das primeiras galáxias, onde as jovens galáxias começam a transformação para serem cada vez mais parecidas com as atuais galáxias mais estruturadas.

A A1689-zD1, uma galáxia jovem, ativa e formadora de estrelas ligeiramente menos luminosa e menos massiva do que a Via Láctea, está localizada a cerca de 13 bilhões de anos-luz da Terra na direção da constelação de Virgem. Foi descoberta escondida por trás do aglomerado de galáxias Abell 1689 em 2007 e confirmada em 2015 graças a lentes gravitacionais, que ampliou o brilho da jovem galáxia mais de 9 vezes.

Desde então, os cientistas têm estudado a galáxia como uma possível análoga para a evolução de outras galáxias "normais". Os comportamentos e características da A1689-zD1 foi divididos em dois grupos: típicos e incomuns, com as características imitando as galáxias mais recentes e mais massivas.

Um processo anormal é a produção e distribuição, na galáxia, do combustível para a formação estelar, potencialmente em grandes quantidades. A equipe usou o receptor de Banda 6 do ALMA, altamente sensível, para observar um halo de gás carbono que se estende muito para além do centro da jovem galáxia. Isto poderia ser evidência de formação estelar contínua na mesma região ou o resultado de rupturas estruturais, tais como fusões ou fluxos, nas fases mais precoces da formação da galáxia.

O gás carbônico que foi observado nesta galáxia é tipicamente encontrado nas mesmas regiões que o gás hidrogênio neutro, que é também onde novas estrelas tendem a formar-se. Se for este o caso para A1689-zD1, a galáxia é provavelmente muito maior do que se pensava anteriormente. É também possível que este halo seja um remanescente da atividade galáctica anterior, como fusões que exerceram forças gravitacionais complexas na galáxia, levando à ejeção de muito gás neutro a estas grandes distâncias. Em ambos os casos, a evolução precoce desta galáxia foi provavelmente ativa e dinâmica.

Os astrônomos também observaram fluxos de gás quente e ionizado, geralmente provocados por atividade galáctica violenta como supernovas, empurrando para fora do centro da galáxia. Dada a sua natureza potencialmente explosiva, os fluxos podem ter algo a ver com o halo de carbono.

A galáxia A1689-zD1 apresenta um alto desvio para o vermelho, sendo a mais distante galáxia poeirenta conhecida. Em última análise, vemos aqui que as primeiras galáxias do Universo são muito complexas e esta galáxia continuará apresentando novos desafios e resultados de investigação durante algum tempo.

Estão planejadas para janeiro de 2023 observações espectroscópicas e infravermelhas da galáxia A1689-zD1, usando os instrumentos NIRSpec IFU (Integral Field Unit) e NIRCam no telescópio espacial James Webb. As novas observações vão complementar os dados anteriores do Hubble e do ALMA, fornecendo um olhar multi-comprimento de onda mais profundo e mais completo da jovem galáxia.

As observações serão publicadas numa próxima edição do periódico The Astrophysical Journal

Fonte: National Radio Astronomy Observatory

Reveladas excentricidades inesperadas em disco de detritos próximo

Usando o ALMA (Atacama Large Millimeter/submillimeter Array), os astrônomos fotografaram pela primeira vez o disco de detritos da estrela vizinha HD 53143 em comprimentos de onda milimétricos, e não se parece nada com o que esperavam.

© M. Weiss (ilustração de estrela com disco de detritos excêntrico)

Com base em dados iniciais coronográficos, os cientistas esperavam que o ALMA confirmasse o disco de detritos como um anel visto de face, salpicado por amontoados de poeira. Em vez disso, as observações tomaram um rumo surpreendente, revelando o disco de detritos mais complicado e excêntrico observado.

A estrela HD 53143, semelhante ao Sol com cerca de um bilhão de anos, localizada a 59,8 anos-luz da Terra na direção da constelação de Carina, foi observada pela primeira vez em 2006 com o instrumento ACS (Advanced Camera for Surveys) do telescópio espacial Hubble.

À sua volta também existe um disco de detritos, um cinturão de cometas que orbita uma estrela colidindo constantemente, que parece um anel visto de face semelhante ao disco de detritos que rodeia o nosso Sol, mais vulgarmente conhecido como Cinturão de Kuiper.

As novas observações do ALMA da HD 53143, utilizando os seus receptores altamente sensíveis de Banda 6, revelaram que o disco de detritos do sistema estelar é altamente excêntrico. Em discos de detritos com a forma de anel, a estrela está tipicamente localizada no centro do disco ou perto dele. Mas em discos excêntricos, de forma elíptica, a estrela reside num dos focos da elipse, distante do centro do disco. É o caso de HD 53143, que não tinha sido observada em estudos coronográficos anteriores, porque os coronógrafos bloqueiam propositadamente a luz de uma estrela para ver mais claramente os objetos próximos. O sistema estelar também pode estar abrigando um segundo disco e pelo menos um planeta. A fim de produzir esta estrutura, deve haver um planeta ou planetas no sistema que estejam perturbando gravitacionalmente o material no disco. 

Os discos de detritos não são apenas coleções de poeira e rochas no espaço. São um registo histórico da formação planetária e de como os sistemas planetários evoluem. Isto possibilita estudar indiretamente a formação da Terra e do Sistema Solar.

As observações serão publicadas numa próxima edição do periódico The Astrophysical Journal Letters.

Fonte: National Radio Astronomy Observatory

quinta-feira, 16 de junho de 2022

A teia cósmica da Tarântula

Os astrônomos revelaram detalhes intrincados da região de formação estelar 30 Doradus, também conhecida como Nebulosa da Tarântula.

© ALMA / VLT / VISTA (Nebulosa da Tarântula)

Numa imagem de alta resolução divulgada ontem pelo Observatório Europeu do Sul (ESO) e incluindo dados do ALMA, vemos a nebulosa sob uma nova luz, com nuvens de gás finas que fornecem informações sobre como as estrelas massivas moldam esta região. Na imagem, nota-se os novos dados do ALMA sobrepostos a uma imagem infravermelha da mesma região que mostra estrelas brilhantes e nuvens rosadas de gás quente, obtida anteriormente com o Very Large Telescope (VLT) e o Visible and Infrared Survey Telescope for Astronomy (VISTA), ambos do ESO. A imagem composta mostra uma forma distinta de teia nas nuvens de gás da Nebulosa da Tarântula, o que deu precisamente origem ao seu nome. Os novos dados do ALMA compreendem as faixas vermelho-amarelas brilhantes na imagem: gás muito frio e denso que pode um dia entrar em colapso e formar estrelas.

Estes fragmentos podem ser os restos de nuvens, anteriormente maiores e que foram despedaçadas pelas enormes energias emitidas por estrelas jovens massivas, num processo denominado feedback. 

Os astrônomos pensavam inicialmente que o gás existente nestas regiões estivesse demasiado disperso e sobrecarregado por este feedback turbulento para que a gravidade o reunisse para formar novas estrelas. No entanto, os novos dados revelaram também filamentos muito densos onde o papel da gravidade é significativo, permitindo a continuação da formação estelar. 

Localizada na Grande Nuvem de Magalhães, uma galáxia satélite da Via Láctea, a Nebulosa da Tarântula é uma das regiões de formação estelar mais brilhantes e ativas da nossa vizinhança galáctica, a cerca de 170.000 anos-luz de distância da Terra. 

No seu núcleo encontram-se algumas das estrelas mais massivas conhecidas, algumas com mais de 150 vezes a massa do nosso Sol, o que faz desta região o local ideal para se estudar como é que as nuvens de gás colapsam sob a ação da gravidade para formar novas estrelas. 

É possível estudar em 30 Doradus como é que as estrelas se formavam há 10 bilhões de anos, na época em que nasceram a maioria das estrelas do Universo. Apesar da maior parte dos estudos anteriores relativos à Nebulosa da Tarântula tenham se concentrado essencialmente em regiões do seu centro, os astrônomos sabem há muito tempo que a formação de estrelas massivas também está acontecendo em outros lugares.

Para entender melhor este processo, a equipe realizou observações de alta resolução cobrindo uma grande região da nebulosa. Com o auxílio do ALMA, os pesquisadores fizeram medições da emissão de monóxido de carbono gasoso, conseguindo assim mapear as enormes nuvens de gás frio da nebulosa que colapsam para dar origem a novas estrelas, e observar como é que se vão modificando à medida que enormes quantidades de energia vão sendo liberadas por estas novas estrelas.

A nova pesquisa fornece pistas importantes sobre como é que a gravidade se comporta nas regiões de formação estelar da Nebulosa da Tarântula, no entanto o trabalho está longe de terminar.

Esta pesquisa está sendo apresentada no 240º Encontro da American Astronomical Society (AAS) na conferência intitulada "Stars, Their Environments & Their Planets”. Ela também foi divulgada no artigo “The 30 Doradus Molecular Cloud at 0.4 Parsec Resolution with ALMA: Physical Properties and the Boundedness of CO Emitting Structures” publicado na revista The Astrophysical Journal

Fonte: ESO

Descoberto um número inédito de anãs marrons

As anãs marrons são essenciais para a nossa compreensão tanto das populações estelares como das populações planetárias.

© The Open University (ilustração de uma anã marrom)

Uma equipe internacional liderada por pesquisadores da The Open University e da Universidade de Berna observou diretamente quatro novas anãs marrons graças a um novo e inovador método de busca. 

As anãs marrons são objetos situados, em termos de massa, entre as estrelas mais leves e os planetas mais massivos, com uma mistura de características estelares e planetárias. Devido a esta natureza híbrida, estes objetos enigmáticos são cruciais para melhorar a nossa compreensão tanto das estrelas como dos planetas gigantes.

As anãs marrons que orbitam uma estrela progenitora suficientemente longe são particularmente valiosas, pois podem ser fotografadas diretamente, ao contrário das que estão demasiado próximas da sua estrela e que, por isso, se escondem no seu brilho. Isto proporciona aos cientistas uma oportunidade única de estudar os detalhes das atmosferas frias e semelhantes a planetas das anãs marrons

No entanto, apesar dos esforços notáveis no desenvolvimento de novas tecnologias de observação e técnicas de processamento de imagem, as detecções diretas destas anãs marrons, companheiras de estrelas, têm permanecido bastante esparsas, com apenas cerca de 40 sistemas observados em quase três décadas de pesquisa. 

Esta é a primeira vez que múltiplos novos sistemas com anãs marrons como companheiras, em separações amplas, são anunciados ao mesmo tempo. As anãs marrons companheiras, com órbitas largas, são já de si raras, e a sua detecção coloca diretamente enormes desafios técnicos, uma vez que as estrelas anfitriãs cegam completamente os telescópios. A maioria dos levantamentos realizados até agora têm visado indeliberadamente estrelas aleatórias em jovens aglomerados. 

Uma abordagem alternativa para aumentar o número de detecções é apenas observar estrelas que mostram indícios de um objeto adicional no sistema. Por exemplo, a forma como uma estrela se move sob a atração gravitacional de uma companheira pode ser um indicador da existência desta companheira, quer seja uma estrela, um planeta ou uma anã marrom.

Aplicando a ferramenta COPAINS, que prevê os tipos de companheiras que podem ser responsáveis pelas anomalias observadas em movimentos estelares, a equipe selecionou cuidadosamente 25 estrelas próximas que pareciam promissoras para a detecção direta de companheiras escondidas, de baixa massa, com base em dados do observatório espacial Gaia da ESA. 

Usando o instrumento SPHERE no VLT (Very Large Telescope) no Chile para observar estas estrelas, foram detectadas dez novas companheiras com órbitas que vão desde a de Júpiter até para lá da de Plutão, incluindo cinco estrelas de baixa massa, uma anã branca e as quatro novas anãs marrons. 

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: The Open University

segunda-feira, 13 de junho de 2022

Sistema estelar quádruplo pode dar origem a supernovas

Um sistema estelar quádruplo observado recentemente na Universidade de Canterbury poderia representar um novo canal pelo qual explosões termonucleares de supernovas podem ocorrer no Universo.

© Universe Magazine (sistema estelar quádruplo)

O raro sistema estelar duplo binário HD74438 foi descoberto na constelação de Vela em 2017 usando o Gaia-ESO Survey que caracterizou mais de 100.000 estrelas na Via Láctea.

Observações de acompanhamento do HD 74438 foram obtidas ao longo de vários anos para rastrear com precisão as órbitas das estrelas no sistema estelar quádruplo. As observações foram feitas com espectrógrafos de alta resolução Hercules no Telescópio McLellan de 1,0 m no Observatório Mt. John da Universidade de Canterbury, na Nova Zelândia, e no Grande Telescópio da África do Sul. 

Os astrônomos foram capazes de determinar que este sistema estelar é composto de quatro estrelas gravitacionalmente ligadas: um binário de período curto orbitando outro binário de período curto em um período orbital mais longo (configuração 2 + 2). 

O sistema quádruplo é um membro do jovem aglomerado estelar aberto IC 2391, tornando-o o quádruplo espectroscópico mais jovem (com apenas 43 milhões de anos) descoberto na Via Láctea até hoje, e entre os sistemas quádruplos com o menor período orbital externo de seis anos. 

Os pesquisadores mostraram que os efeitos gravitacionais do sistema binário externo estão mudando as órbitas do binário interno, fazendo com que ele se torne mais excêntrico. Simulações de última geração da evolução futura deste sistema mostram que tal dinâmica gravitacional pode levar a uma ou múltiplas colisões e eventos de fusão produzindo estrelas mortas evoluídas (anãs brancas) com massas logo abaixo do limite de Chandrasekhar. Como resultado de transferência de massa ou fusões, estas estrelas anãs brancas podem produzir uma explosão termonuclear de supernova. 

Uma estrela como o nosso Sol terminará sua vida como uma pequena estrela morta densa conhecida como anã branca, e a massa das anãs brancas não pode ultrapassar o chamado limite de Chandrasekhar, ou seja, cerca de 1,4 vezes a massa do Sol. Se isso acontecer, por causa da transferência de massa ou eventos de fusão, pode colapsar e produzir uma supernova termonuclear. Curiosamente, suspeita-se que 70% a 85% de todas as supernovas termonucleares resultem da explosão de anãs brancas com massas sub-Chandrasekhar. 

As estrelas binárias são protagonistas de eventos astrofísicos, onde suas fusões são a causa da recente detecção de emissões de ondas gravitacionais. Elas também nos permitem derivar parâmetros estelares fundamentais como massas, raios e luminosidades com uma precisão melhor em comparação com estrelas únicas. Elas representam as joias nas quais vários tópicos de astrofísica dependem. 

Os sistemas estelares quádruplos representam apenas uma fração marginal de todos os sistemas múltiplos. A evolução complexa de tais sistemas múltiplos envolve transferência de massa e colisões, levando a fusões que também são possíveis progenitores de supernovas termonucleares. Estas supernovas representam velas padrão para fixar a escala de distância do Universo, embora os canais evolutivos que levam aos progenitores de tais explosões de supernovas ainda sejam altamente debatidos. 

O artigo "A spectroscopic quadruple as a possible progenitor of sub-Chandrasekhar type Ia supernovae" foi publicado na revista Nature Astronomy

Fonte: University of Canterbury

domingo, 12 de junho de 2022

Novas semelhanças entre a Terra e Titã

A lua de Saturno, Titã, é bastante parecida com a Terra, pois também tem rios e mares, só que eles são compostos de metano e etano líquidos em vez de água.

© NASA/Cassini (Titã)

Astrônomos descobriram como o ciclo de líquido no satélite é similar com o do nosso planeta, mostrando semelhanças antes desconhecidas.

A pesquisa foi liderada por Mathieu Lapôtre, geólogo da Universidade de Stanford, nos Estados Unidos. O estudo revela de que modo o ciclo de transporte de líquido impulsiona grãos sobre a superfície de Titã. 

A atmosfera da maior lua de Saturno é tomada por ventos de nitrogênio que formam dunas de areia de hidrocarbonetos. Os cientistas identificaram o processo que permite a formação de tais grãos e até mesmo de rochas em Titã, dependendo da frequência com que os ventos sopram e os riachos fluem. Com isso, eles acreditam ter descoberto como todos os ambientes sedimentares da lua se formaram. “Se entendermos como as diferentes peças do quebra-cabeça se encaixam e sua mecânica, podemos começar a usar as formas de relevo deixadas por esses processos sedimentares para dizer algo sobre o clima ou a história geológica de Titã, e como elas podem afetar a perspectiva para a vida na lua,” aponta Lapôtre. 

Primeiro, os pesquisadores buscaram compreender como os compostos orgânicos básicos de Titã — que acredita-se serem muito mais frágeis do que grãos de silicato inorgânicos na Terra — podem se transformar em estruturas maiores em vez de virarem poeira. Normalmente, conforme os ventos transportam os grãos, eles colidem uns com os outros e com a superfície. Essas colisões tendem a diminuir o tamanho do grão. Mas qual mecanismo poderia deixar grãos em tamanho estável? 

Ao analisarem ooides, sedimentos esféricos de mares tropicais rasos da Terra, os cientistas acreditam ter encontrado uma resposta: esses sedimentos podem passar por uma precipitação química, que permite que eles cresçam, apesar da erosão de ondas e tempestades. Um processo similar também pode estar ocorrendo no satélite de Saturno. “Nós levantamos a hipótese de que a sinterização, que envolve grãos vizinhos se fundindo em uma única peça, poderia contrabalançar a erosão [em Titã] quando os ventos transportam os grãos,” explica Lapôtre. 

Ao averiguarem dados da sonda Cassini, da NASA, os autores do estudo viram que os ventos são mais comuns perto do equador da lua, onde ocorre menos sinterização, formando, portanto, grãos de areia mais finos, componente crítico para formar dunas. Já em latitudes médias, o processo químico cria grãos mais grossos, eventualmente originando rochas que compõem planícies. Os grãos de areia também formam labirintos perto dos polos, onde há maior frequência de rios e tempestades, tornando os sedimentos mais propensos a serem transportados pelo líquido do que pelo vento. 

“Estamos mostrando que em Titã, assim como na Terra e como costumava ser em Marte, temos um ciclo sedimentar ativo que pode explicar a distribuição latitudinal das paisagens. É muito fascinante pensar em como existe esse mundo alternativo tão distante, onde as coisas são tão diferentes, mas tão semelhantes,” complementa Lapôtre. 

Um artigo foi publicado no periódico Geophysical Research Letters

Fonte: Revista Galileu