quarta-feira, 15 de outubro de 2025

Detectado o objeto escuro de menor massa no Universo distante

Uma equipe internacional de pesquisadores, utilizando uma rede mundial de radiotelescópios, incluindo o VLBA (Very Long Baseline Array) e o GBT (Green Bank Telescope), detectou um enigmático objeto escuro com uma massa cerca de um milhão de vezes superior à do nosso Sol, sem observar qualquer emissão de luz.

© NRAO (arco de lente gravitacional e sinal de aglomerado de matéria escura)

Este é o objeto escuro de menor massa alguma vez detectado a uma distância cosmológica usando apenas a sua influência gravitacional, constituindo um marco importante na tentativa de desvendar a natureza da matéria escura.

A descoberta utiliza uma técnica conhecida como interferometria de longa linha de base para formar um telescópio global, do tamanho da Terra, que capta imagens extremamente nítidas de fenômenos cósmicos.

A equipe observou um sistema de galáxias distantes, JVAS B1938+666, onde a luz de uma galáxia de fundo sofre o efeito de lente gravitacional de uma galáxia em primeiro plano, produzindo belos arcos e imagens múltiplas.

O objeto recentemente caracterizado é indetectável nos comprimentos de onda do infravermelho ou no rádio e foi encontrado a cerca de 10 bilhões de anos-luz da Terra, cerca de 6,5 bilhões de anos após o Big Bang.

A sua detecção foi possível graças ao método de imagem gravitacional, que mapeia sensivelmente a forma como a luz de fontes de fundo é deformada por uma massa invisível. A concentração de massa, designada por "V" no estudo, tem uma massa cilíndrica equivalente a 1,13 milhões de sóis num raio de 80 parsecs. Trata-se de um nível de precisão e de distância nunca antes alcançado para objetos tão pequenos e tênues.

A equipe desenvolveu algoritmos computacionais avançados e utilizou supercomputadores para processar e modelar vastos conjuntos de dados. Isto permitirá aos astrônomos sondar a estrutura da matéria escura ao longo do tempo cósmico, abrindo a porta à descoberta de mais objetos deste tipo e examinando se as teorias atuais sobre a formação de galáxias resistem ao escrutínio.

As observações realçam ainda mais o poder de reunir radiotelescópios de todo o mundo para ultrapassar os limites da sensibilidade e da resolução angular. O GBT e o VLBA, ambos operados pelo NRAO (National Radio Astronomy Observatory) desempenharam um papel crucial nesta descoberta histórica. À medida que a equipe continua estudando outros sistemas de lentes gravitacionais, quaisquer descobertas futuras ajudarão a determinar se a abundância e a natureza destes objetos escuros são consistentes com as teorias fundamentais que governam o nosso Universo.

Um artigo foi publicado na resvista Nature Astronomy e outro no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: National Radio Astronomy Observatory

Buraco negro sendo alimentado por matéria

Esta imagem permite-nos ver mais de perto como é que os buracos negros situados no centro das galáxias se alimentam.

© ALMA (galáxia Circinus)

Apesar de ser uma crença bastante comum, a ideia de que os buracos negros simplesmente sugam tudo o que se aproxima deles não é correta. A matéria apenas pode cair num buraco negro quando é, de alguma forma, desacelerada.

Assim, que tipo de fenômeno poderá ser responsável por travar o movimento da matéria, fazendo com que esta possa cair no buraco negro?

Para dar resposta a esta questão, uma equipe de astrônomos da Universidade de Leiden, Países Baixos, mapeou a distribuição do gás molecular na galáxia Circinus, situada na constelação austral de Circinus a cerca de 13 milhões de anos-luz de distância da Terra. Embora seja uma das grandes galáxias mais próximas, só foi descoberta em 1977 por estar escondida atrás do disco da Via Láctea.

Podemos ver esta galáxia no visível no canto superior esquerdo da imagem. As duas outras imagens inseridas, à direita e em baixo, foram obtidas com o Atacama Large Millimeter/submillimeter Array (ALMA).

O gás flui em direção ao buraco negro por dois braços em espiral existentes no disco, que vemos nas regiões mais internas da galáxia (em cima à direita). Estes braços alimentam a nuvem em forma de rosquinha que rodeia o buraco negro (em baixo).

A influência gravitacional dos braços em espiral perturba o movimento do gás molecular, que cai diretamente no buraco negro, do mesmo modo que um satélite cairia na Terra se a sua órbita fosse perturbada. O processo de alimentação é, no entanto, muito pouco eficiente: a equipe descobriu que cerca de 90% deste material acaba por não cair no buraco negro, sendo "cuspido" de volta.

Foi calculado que o gás nos braços se move para dentro a velocidades de até 150.000 km/h. Além disso, parece que apenas 12% da matéria que entra realmente desaparece no buraco negro. O restante é ejetado novamente antes de atingi-lo.

Por que tão pouca matéria chega ao buraco negro? Todos os buracos negros supermassivos têm braços espirais como este? A matéria ejetada acaba caindo de volta no buraco negro como uma fonte em um lago ou acaba mais longe e desencadeia a formação de estrelas?

Os pesquisadores esperam encontrar as respostas usando o Event Horizon Telescope (EHT), que tirou as primeiras fotos icônicas de buracos negros supermassivos, e o Extremely Large Telescope (ELT), que está em construção no Chile.

Um artigo foi aceito para publicação no periódico Astronomy & Astrophysics.

Fonte: ESO

terça-feira, 7 de outubro de 2025

Detectado fosfina na atmosfera de uma anã marrom

O fósforo é um dos seis elementos fundamentais necessários à vida na Terra.

© Adam Burgasser (sistema triplo Wolf 1130ABC)

Quando combinado com o hidrogênio, o fósforo forma a molécula fosfina (PH3), um gás explosivo e altamente tóxico. Encontrada nas atmosferas dos planetas gigantes gasosos Júpiter e Saturno, a fosfina há muito que é reconhecida como uma possível bioassinatura de vida anaeróbica, uma vez que existem poucas fontes naturais deste gás nas atmosferas dos planetas terrestres. Na Terra, a fosfina é um subproduto da decomposição da matéria orgânica dos pântanos. 

Agora, foi detectada fosfina na atmosfera de uma anã marrom antiga e fria chamada Wolf 1130C. A fosfina foi detectada na atmosfera de Wolf 1130C através de observações obtidas com o telescópio espacial James Webb, o primeiro telescópio com a sensibilidade necessária para observar estes objetos celestes em pormenor. O mistério, no entanto, não é porque é que a fosfina foi encontrada, mas porque é que está ausente nas atmosferas de outras anãs marrons e de outros exoplanetas gigantes gasosos.

O programa de astronomia, chamado "Arcana of the Ancients", centra-se em anãs marrons antigas e pobres em metais como forma de testar a compreensão da química atmosférica. Nas atmosferas ricas em hidrogênio de planetas gigantes gasosos como Júpiter e Saturno, a fosfina forma-se naturalmente. Como tal, os cientistas há muito que previram que a fosfina deveria estar presente nas atmosferas dos gigantes gasosos que orbitam outras estrelas e nas suas primas mais massivas, as anãs marrons, objetos por vezes chamados "estrelas falhadas" porque não fundem o hidrogênio.

No entanto, a fosfina tem escapado largamente à detecção, mesmo em observações anteriores do telescópio espacial James Webb, o que sugere problemas com a nossa compreensão da química do fósforo. 

No sistema estelar Wolf 1130ABC, localizado a 54 anos-luz do Sol na direção da constelação de Cisne, a anã marrom Wolf 1130C segue uma órbita larga em torno de um compacto sistema estelar duplo, composto por uma estrela vermelha fria (Wolf 1130A) e uma anã branca massiva (Wolf 1130B). Wolf 1130C tem sido uma das fontes favoritas dos astrônomos que estudam as anãs marrons devido à sua baixa abundância de metais, ou seja, essencialmente quaisquer outros elementos que não o hidrogênio e o hélio, em comparação com o Sol.

Ao contrário de outras anãs marrons, a equipe detectou facilmente a fosfina nos dados espcetrais infravermelhos de Wolf 1130C pelo telescópio espacial James Webb. Para compreender plenamente as implicações das suas descobertas, a equipe precisava de quantificar a abundância deste gás na atmosfera de Wolf 1130C.

Para determinar as abundâncias das moléculas em Wolf 1130C, foi utilizada uma técnica de modelação conhecida como "recuperação atmosférica". Esta técnica usa os dados do telescópio espacial James Webb para determinar a quantidade de cada espécie de gás molecular que deve estar na atmosfera. Os modelos mostraram que a abundância de fosfina era o ingrediente secreto de Wolf 1130C.

Esta descoberta levanta uma questão: porque é que a fosfina está presente na atmosfera desta anã marrom e não em outras? Uma possibilidade é a baixa abundância de metais na atmosfera de Wolf 1130C, que pode alterar a sua química subjacente. Pode ser que em condições normais o fósforo esteja ligado a outra molécula, como o trióxido de fósforo. Na atmosfera pobre em metais de Wolf 1130C, não há oxigênio suficiente para absorver o fósforo, permitindo que a fosfina se forme a partir do hidrogênio abundante. 

A equipe espera explorar esta possibilidade com novas observações do telescópio espacial James Webb que irão procurar fosfina nas atmosferas de outras anãs marrons pobres em metais. Outra possibilidade é que o fósforo tenha sido gerado localmente no sistema Wolf 1130ABC, especificamente pela sua anã branca, Wolf 1130B. Uma anã branca é o que resta de uma estrela que acabou de fundir o seu hidrogénio. São tão densas que, quando acretam material na sua superfície, podem sofrer reações nucleares descontroladas que são detectadas como novas. 

Embora os astrônomos não tenham visto evidências recentes de tais eventos no sistema Wolf 1130ABC, as novas têm tipicamente ciclos de explosão de milhares a dezenas de milhares de anos. Este sistema é conhecido há pouco mais de um século, e as suas erupções, não vistas, podem ter deixado um legado de poluição por fósforo. Estudos anteriores propuseram que uma fração significativa do fósforo da Via Láctea poderia ter sido sintetizado por este processo. Compreender porque é que esta anã marrom mostra uma assinatura clara de fosfina pode levar a novos conhecimentos sobre a síntese do fósforo na Via Láctea e sobre a sua química nas atmosferas planetárias.

Um artigo foi publicado na revista Science.

Fonte: University of California

Descobertos novos filamentos perto de Centaurus A

Esta extraordinária imagem profunda de Centaurus A (NGC 5128) revela intrincadas estruturas de Hα (hidrogênio-alfa) dentro dos 8 a 10 quiloparsecs internos da galáxia, documentadas com grande detalhe, ainda não descritas na literatura.

© Rolf W. Olsen (Centaurus A)

Esta imagem oferece um raro vislumbre do coração dinâmico de uma galáxia ativa em turbulência. 

As nuvens de emissão brilhantes estendem-se do núcleo e da faixa de poeira da galáxia até a Região de Transição Norte, traçando o mesmo caminho dos conhecidos filamentos de jato óptico de Centaurus A.

Localizada a cerca de 12 milhões de anos-luz de distância, Centaurus A é uma das radiogaláxias ativas mais próximas, constituída por um buraco negro supermassivo que se alimenta de material em queda. Os jatos relativísticos resultantes interagem com o gás circundante, acendendo vastas nuvens de hidrogênio e oxigênio em tons brilhantes de vermelho e azul.

A nebulosidade se origina perto da faixa de poeira central, estendendo-se principalmente para leste e nordeste. Ela aparece como regiões de emissão de Hα irregulares e tênues que se estendem da faixa de poeira através do filamento óptico interno, localizado a aproximadamente 8 kpc (25.000 anos-luz) do núcleo. A emissão de Hα continua para nordeste, conectando-se com o filamento óptico externo a uma distância projetada de 15 kpc (49.000 anos-luz). A área ao redor do filamento externo também mostra muitas estruturas de Hα tênues.

Embora essas características sejam visíveis em conjuntos de dados profissionais, como o Canada–France–Hawaii Telescope (CFHT), algumas não foram captadas anteriormente em astrofotografia amadora, incluindo a imagem anterior de 320 horas em 2024, obtida por Rolf W. Olsen.

Para detectar a emissão ultrafina de Hα próxima ao núcleo, especialmente dentro do halo estelar brilhante, foi realizada uma cuidadosa subtração contínua. Esse processo remove gradientes de fluxo de banda larga, isolando apenas a emissão da linha estreita de Hα.

Nos últimos 11 anos, Olsen coletou centenas de horas de dados sobre Centaurus A no seu observatório em Auckland, Nova Zelândia. Esse esforço de longo prazo levou a vários resultados notáveis, incluindo a primeira detecção óptica da luz do jato do sul, de outra forma invisível, e a descoberta de novas estruturas de Hα e [O III] associadas aos filamentos ópticos do jato do norte.

A exposição total (LRGBHaOIII) desta imagem recente é de 454 horas. Até o momento, foi acumulado um total de 220 horas de exposição em Hα, representando a imagem Hα mais profunda de Centaurus A já tirada, por amadores ou profissionais.

Fonte: Amateur Astronomy Photo of the Day

segunda-feira, 6 de outubro de 2025

A matéria escura e a energia escura podem ser apenas uma ilusão cósmica

Os astrônomos pensam, há décadas, que a matéria escura e a energia escura constituem a maior parte do Universo. No entanto, um novo estudo sugere que poderão não existir de todo.

© Hubble (NGC 7038)

Em vez disso, o que nos parece ser matéria e energia escuras pode ser simplesmente o efeito das forças naturais do Universo enfraquecendo lentamente à medida que este envelhece.

Liderado por Rajendra Gupta, professor no Departamento de Física da Universidade de Ottawa, o estudo afirma que se as forças básicas da natureza (como a gravidade) mudarem lentamente ao longo do tempo e no espaço, podem explicar os estranhos fenômenos que observamos, tais como a forma como as galáxias evoluem e giram e como o Universo se expande.

"As forças do Universo enfraquecem, em média, à medida que este se expande", explica o professor Gupta. "Este enfraquecimento faz com que pareça que existe um impulso misterioso que faz com que o Universo se expanda mais rapidamente (que é identificado como a energia escura). No entanto, à escala das galáxias e dos aglomerados de galáxias, a variação destas forças no espaço gravitacionalmente limitado resulta numa gravidade extra (que se considera ser devida à matéria escura). Mas estas coisas podem ser apenas ilusões, resultantes da evolução das constantes que definem a força das forças".

E acrescenta: "Há dois fenômenos muito diferentes que devem ser explicados pela matéria escura e pela energia escura: o primeiro é à escala cosmológica, ou seja, a uma escala superior a 600 milhões de anos-luz, assumindo que o Universo é homogêneo e igual em todas as direções. O segundo é à escala astrofísica, ou seja, a uma escala menor o Universo é muito irregular e depende da direção. No modelo padrão, os dois cenários requerem equações diferentes para explicar as observações usando matéria escura e energia escura. O nosso é o único que as explica com a mesma equação e sem necessidade de matéria ou energia escuras".  "O que é realmente excitante é que esta nova abordagem permite-nos explicar o que vemos no céu: a rotação das galáxias, o agrupamento de galáxias e até a forma como a luz se curva em torno de objetos massivos, sem termos de imaginar que há algo escondido lá fora. Tudo isto é apenas o resultado da variação das constantes da natureza à medida que o Universo envelhece e se torna irregular".

No ano passado, o professor Gupta pôs em causa a existência da matéria escura no Universo no seu estudo à escala cosmológica. Neste trabalho à escala astrofísica, questionou os modelos teóricos atuais para as curvas de rotação das galáxias.

No novo modelo, o parâmetro frequentemente designado por α emerge do fato de se permitir a evolução das constantes de acoplamento. Com efeito, α comporta-se como uma "componente" extra nas equações gravitacionais que produz efeitos semelhantes aos que os astrônomos atribuem à matéria escura e à energia escura.

Em escalas cosmológicas, α é tratado como uma constante, por exemplo, determinado pelo ajuste de dados de supernovas. Mas localmente (à escala astrofísica), numa galáxia, dado que a distribuição da matéria comum (buracos negros, estrelas, planetas, gás, etc.) varia drasticamente, α varia, fazendo com que o efeito gravitacional extra dependa da localização dessa matéria. Assim, a nova teoria prevê que, em regiões onde existe muita matéria comum, o efeito gravitacional extra é menor, e onde a densidade de matéria detectável é baixa, é maior.

Em vez de adicionar halos de matéria escura à volta das galáxias, a atração gravitacional extra vem de α no novo modelo. Reproduz as "curvas de rotação planas" observadas (estrelas que se movem mais depressa do que o esperado nas partes exteriores das galáxias).

O professor Gupta pensa que esta ideia pode resolver alguns dos maiores quebra-cabeças da astronomia. "Durante anos, lutamos para explicar como é que as galáxias do Universo primitivo se formaram tão rapidamente e se tornaram tão massivas", afirma. "Com o nosso modelo, não é necessário assumir quaisquer partículas exóticas ou quebrar as regras da física. A linha temporal do Universo simplesmente estica-se, quase duplicando a idade do Universo e abrindo caminho para tudo o que observamos".

Efetivamente, a linha temporal alargada para a formação de estrelas e galáxias torna muito mais fácil explicar como é que estruturas grandes e complexas como galáxias e buracos negros podem ter aparecido tão cedo no Universo. Esta teoria pode mudar completamente a forma como pensamos sobre o Universo. Dá mesmo a entender que a procura de partículas de matéria escura, algo em que os cientistas gastaram anos e bilhões de dólares, poderá afinal não ser necessária. Mesmo que as partículas exóticas sejam encontradas experimentalmente, teriam de constituir cerca de seis vezes a massa da matéria comum. Talvez os maiores segredos do Universo sejam apenas constituídos pelas constantes evolutivas da natureza.

Um artigo foi publicado no periódico Galaxies.

Fonte: University of Ottawa

Gaia descobre uma grande onda na Via Láctea

A nossa Galáxia nunca está parada: gira e oscila. E agora, dados do telescópio espacial Gaia da ESA revelam que a Via Láctea também tem uma onda gigante que ondula do seu centro para fora.

© ESA / Gaia (ondulação de lado na Via Láctea)

Há cerca de cem anos que sabemos que as estrelas da Via Láctea giram em torno do seu centro e o Gaia mediu as suas velocidades e movimentos. Desde a década de 1950 que sabemos que o disco da Via Láctea está deformado. Depois, em 2020, o Gaia descobriu que este disco oscila ao longo do tempo, de forma semelhante ao movimento de um pião.

E agora tornou-se claro que uma grande onda agita o movimento das estrelas da Via Láctea ao longo de distâncias de dezenas de milhares de anos-luz do Sol. Tal como uma pedra atirada para um lago, fazendo ondulações para fora, esta onda galáctica de estrelas abrange uma grande parte do disco exterior da Via Láctea.

A inesperada ondulação galáctica é vista com as posições de milhares de estrelas brilhantes que são mostradas em vermelho e azul, sobrepostas nos mapas da Via Láctea pelo Gaia. Mesmo que nenhuma nave espacial possa viajar para além da nossa Galáxia, a visão excepcionalmente precisa do Gaia, nas três direções espaciais (3D) e nas três velocidades (movendo-se em direção a nós e para longe de nós, e pelo céu) está permitindo aos cientistas fazer estes mapas de cima para baixo e de lado. A partir deles, podemos ver que a onda estende-se por uma enorme porção do disco galáctico, afetando estrelas a pelo menos 30 a 65 mil anos-luz de distância do centro da Galáxia (para efeitos de comparação, a Via Láctea tem cerca de 100 mil anos-luz de diâmetro).

Os astrônomos conseguiram descobrir este movimento surpreendente estudando as posições e movimentos pormenorizados de jovens estrelas gigantes e estrelas Cefeidas. Estas últimas são estrelas que variam de brilho de uma forma previsível e que podem ser observadas por telescópios como o Gaia a grandes distâncias. Dado que as jovens estrelas gigantes e as Cefeidas movem-se com a onda, os cientistas pensam que o gás no disco também pode estar participando nesta ondulação em grande escala. É possível que as estrelas jovens retenham a memória da onda a partir do próprio gás no qual nasceram.

Uma colisão passada com uma galáxia anã poderia ser uma explicação possível, mas os cientistas precisam de mais investigações. A grande onda pode também estar relacionada com um movimento ondulatório de menor escala observado a 500 anos-luz do Sol e que se estende por 9.000 anos-luz, a chamada Onda Radcliffe. No entanto, a Onda Radcliffe é um filamento muito menor e está localizada numa parte diferente do disco da Galáxia, em comparação com a onda estudada (muito mais perto do Sol do que a grande onda). As duas ondas podem ou não estar relacionadas. 

O quarto lançamento de dados do Gaia incluirá posições e movimentos ainda melhores das estrelas da Via Láctea, incluindo estrelas variáveis como as Cefeidas. Isto ajudará na obtenção de mapas ainda melhores, avançando assim na compreensão destas características da Via Láctea.

Um artigo foi publicado no periódico Astronomy & Astrophysics.

Fonte: ESA