Um estudo financiado pela NASA e pela ESA encontrou evidências firmes de que o nitrogênio na atmosfera da lua de Saturno, Titã, teve origem em condições similares ao berço frio dos cometas mais antigos da nuvem de Oort.
© NASA/JPL-Caltech/Space Science Institute (Titã)
A descoberta descarta a possibilidade dos blocos de construção de Titã terem sido produzidos dentro do disco quente de material que se pensa ter cercado o jovem planeta Saturno durante a sua formação.
A principal implicação desta nova pesquisa é que os blocos de construção de Titã formaram-se no início da história do Sistema Solar, no frio disco de gás e poeira que formou o Sol. Este foi também o local do nascimento de muitos cometas, que retêm ainda hoje uma composição primitiva ou praticamente inalterada.
A pesquisa foi liderada por Kathleen Mandt do Instituto de Pesquisa do Sudoeste em San Antonio, EUA e incluem colegas do Centro Nacional de Pesquisa Científica da França (CNRS) e do Observatório de Paris.
O nitrogênio é o ingrediente principal na atmosfera da Terra, bem como na de Titã. A lua de Saturno é frequentemente comparada com uma versão inicial da Terra, mas congelada.
A pesquisa sugere que a informação acerca dos blocos de construção originais de Titã está ainda presente na atmosfera da lua gelada, permitindo aos cientistas testar ideias diferentes da sua formação. Mandt e colegas demonstram que a origem do nitrogênio de Titã é essencialmente a mesma hoje em dia como durante sua formação, há 4,6 bilhões de anos. Esta pista é a proporção entre um isótopo do nitrogênio, chamado nitrogênio-14, e outro isótopo, chamado nitrogênio-15.
A equipe descobriu que o nosso Sistema Solar não é suficientemente antigo para esta taxa do isotópico de nitrogênio ter mudado significativamente. Isto é contrário ao que os cientistas geralmente assumiam.
"Quando olhamos de perto para o modo como esta proporção evoluiu com o tempo, descobrimos que era impossível ter mudado de forma significativa. A atmosfera de Titã contém tanto nitrogênio que nenhum processo pode modificar significativamente este marcador, mesmo após mais de 4 bilhões de anos de história do Sistema Solar," comenta Mandt.
A pequena mudança nesta razão isotópica ao longo de grandes períodos de tempo torna possível a comparação dos blocos de construção originais de Titã com outros objetos do Sistema Solar em busca de ligações entre eles.
À medida que os cientistas planetários investigam o mistério da formação do Sistema Solar, as taxas de isótopos são pistas valiosas que são capazes de recolher. Nas atmosferas planetárias e nos materiais à superfície, a quantidade específica de uma forma de um elemento, como o nitrogênio, relativamente a outra forma desse mesmo elemento, pode ser uma poderosa ferramenta de diagnóstico, pois está intimamente ligada às condições sob as quais os materiais se formam.
O estudo também tem implicações para a Terra. Suporta a visão emergente de que o amoníaco gelado dos cometas não é provavelmente a fonte principal de nitrogênio da Terra. No passado, os cientistas assumiram uma ligação entre os cometas, Titã e a Terra, e supuseram que a taxa do isotópico de nitrogênio na atmosfera original de Titã era o mesmo que o da Terra hoje em dia. As medições da taxa do isotópico de nitrogênio em Titã, por vários instrumentos da missão Cassini-Huygens, mostraram que este não é o caso, o que significa que esta proporção é diferente em Titã e na Terra, enquanto as medições em cometas viram a sua relação confirmada com a de Titã. Isto significa que as fontes de nitrogênio na Terra e de Titã devem ter sido diferentes.
Outros cientistas já haviam mostrado que a razão isotópica de nitrogênio na Terra provavelmente não tinha mudado significativamente desde a formação do nosso planeta.
"Alguns já sugeriram que os meteoritos trouxeram nitrogênio para a Terra, ou que o nitrogênio foi capturado diretamente do disco de gás que formou o Sol. Este é um quebra-cabeças interessante para futuras investigações," salienta Mandt.
Mandt e colegas estão ansiosos por saber se as suas conclusões são suportadas por dados da missão Rosetta da ESA, quando estudar o cometa 67P/Churyumov-Gerasimenko no início do ano que vem. Se a sua análise estiver correta, o cometa deverá ter uma taxa mais baixa dos dois isótopos que o de Titã, neste caso de hidrogênio no gelo de metano. Acreditam que esta proporção química em Titã é mais parecida com a dos cometas da nuvem de Oort do que a dos cometas que nascem no Cinturão de Kuiper, que começa perto da órbita de Netuno. O cometa 67P/Churyumov-Gerasimenko é um astro do Cinturão de Kuiper.
"Este resultado emocionante é um exemplo importante da ciência da Cassini que fornece informação sobre a história do Sistema Solar e a formação da Terra," afirma Scott Edgington, cientista do projeto Cassini no JPL da NASA em Pasadena, no estado americano da Califórnia.
Fonte: NASA e Astrophysical Journal Letters
Nenhum comentário:
Postar um comentário