Cientistas, observando uma curiosa estrela de nêutrons num sistema binário conhecido como "Rapid Burster", podem ter resolvido um mistério de 40 anos em torno das suas intrigantes explosões de raios X.
© ESA/ATG medialab (ilustração do processo de acreção sobre a estrela de nêutrons)
Estas quatro imagens mostram o processo de acreção sobre a estrela de nêutrons no sistema binário MXB 1730-335, também conhecido como "Rapid Burster". Neste sistema binário, a atração gravitacional da estrela de nêutrons remove gás da sua companheira estelar (uma estrela de baixa massa não apresentada nas imagens); o gás forma um disco de acreção e espirala em direção à estrela de nêutrons. Antes da explosão, o campo magnético de alta rotação da estrela de nêutrons impede o avanço do gás que flui da estrela companheira e, efetivamente, cria uma divisão interna no centro de disco (imagem 1). Durante esta fase, apenas pequenas quantidades de gás vazam para a estrela de nêutrons. No entanto, à medida que o gás continua fluindo e se acumulando perto deste limite, gira cada vez mais depressa (imagem 2) e eventualmente alcança a velocidade de rotação do campo magnético (imagens 3 e 4). O gás atinge então a estrela de nêutrons todo de uma só vez, dando origem à emissão dramática de explosões de tipo-II.
Eles descobriram que o seu campo magnético cria uma divisão em torno da estrela, impedindo-a de se alimentar da matéria da sua companheira estelar. O gás acumula-se até que, sob certas condições, atinge a estrela de nêutrons de uma só vez, produzindo flashes intensos de raios X. A descoberta foi feita com telescópios espaciais incluindo o XMM-Newton da ESA.
Descoberto na década de 1970, o "Rapid Burster" é um sistema binário compreendido por uma estrela de baixa massa no seu auge e uma estrela de nêutrons, o remanescente compacto da morte de uma estrela massiva. Em tal par estelar, a atração gravitacional do denso remanescente rouba algum do gás da outra estrela; o gás forma um disco de acreção e espirala em direção à estrela de nêutrons.
Como resultado deste processo de acreção, a maioria dos binários com estrelas de nêutrons libera continuamente grandes quantidades de raios X, pontuados por flashes adicionais de raios X a cada poucas horas ou dias. Os cientistas podem explicar essas explosões do "tipo-I", em termos de reações nucleares deflagradas no gás em queda, principalmente hidrogênio, quando este se acumula à superfície da estrela de nêutrons.
Mas "Rapid Burster" é uma fonte peculiar: quando está mais brilhante, emite estes flashes de raios X e, durante períodos de emissão mais fraca, exibe explosões muito mais elusivas do "tipo-II", liberações súbitas, erráticas e extremamente intensas de raios X.
Em contraste com as explosões de tipo-I, que parecem não representar uma liberação significativa de energia em relação ao que normalmente é emitido pela estrela de nêutrons em acreção, as explosões de tipo-II liberam enormes quantidades de energia durante períodos caracterizados pela ocorrência de muito pouca emissão (a liberação de energia de uma explosão, em relação ao processo normal de acreção, é dezenas a centenas de vezes superior nas explosões de tipo-II do que nas explosões de tipo-I).
Apesar de quarenta anos de pesquisas, as explosões de tipo-II só foram detectadas em outra fonte além de "Rapid Burster". Conhecido como "Bursting Pulsar" e descoberto na década de 1990, este sistema binário abriga uma estrela de baixa massa e uma estrela de nêutrons altamente magnetizada e de rápida rotação, ou seja, um pulsar, que exibe apenas pulsos do tipo-II.
Devido à escassez de fontes que exibem este fenômeno, há muito tempo que se debatem os mecanismos físicos subjacentes, mas um novo estudo de "Rapid Burster" fornece uma primeira evidência do que está ocorrerendo.
"'Rapid Burster' é o sistema arquetípico para investigar as explosões do tipo-II, é onde foram observadas pela primeira vez e a única fonte que mostra flashes do tipo-I e tipo-II," afirma Jakob van den Eijnden, estudante de doutoramento do Instituto Anton Pannekoek para Astronomia em Amesterdam, Holanda.
Neste estudo, Jakob e colegas organizaram uma campanha de observação usando três telescópios espaciais de raios X para saber mais sobre este sistema.
Sob a coordenação de Tullio Bagnoli, também do mesmo instituto, a equipe conseguiu observar a fonte explodindo ao longo de alguns dias em outubro de 2015 com uma combinação do NuSTAR e Swift da NASA e o XMM-Newton da ESA.
Primeiro, monitoraram a fonte com o Swift, cronometrando as observações para um período em que esperavam a ocorrência de uma série de explosões do tipo-II. Em seguida, logo após a detecção da primeira explosão, os cientistas colocaram os outros observatórios em movimento, usando o XMM-Newton para medir os raios X emitidos diretamente pela superfície da estrela de nêutrons ou pelo gás no disco de acreção, e o NuSTAR para detectar raios X de mais alta energia, que são emitidos pela estrela de nêutrons e refletidos para fora do disco.
Com estes dados, os cientistas examinaram a estrutura do disco de acreção para entender o que acontece antes, durante e depois destas copiosas libertações de raios X.
De acordo com um modelo, as explosões do tipo-II ocorrem porque o campo magnético em rápida rotação da estrela de nêutrons mantém o gás que flui da estrela companheira, impedindo com que se aproxime da estrela de nêutrons e, efetivamente, criando uma divisão interna no centro do disco. Contudo, à medida que o gás continua fluindo e se acumulando neste limite, gira cada vez mais depressa e eventualmente alcança a velocidade de rotação do campo magnético.
"É como se lançássemos algo para um carrossel que gira muito depressa: o objeto seria expelido, a menos que fosse atirado à mesma velocidade que a máquina," explica Jakob.
"Um ato de equilíbrio semelhante ocorre entre o gás em queda e o campo magnético giratório: desde que o gás não tenha a velocidade certa, não pode alcançar a estrela de nêutrons e só pode acumular-se na orla. Quando atinge a velocidade certa, grande parte do gás está acumulado e atinge a estrela de nêutrons de uma só vez, dando origem à dramática emissão das explosões de tipo-II."
Este modelo prevê que, enquanto o material está a ser acumulado, deverá formar-se uma lacuna entre a estrela de nêutrons e a orla do disco de acreção.
Em outros modelos, os flashes intensos são explicados como decorrentes de instabilidades no fluxo do gás em acreção ou de efeitos relativistas gerais. Em qualquer um destes dois cenários, os flashes têm que ocorrer muito mais perto da estrela de nêutrons e não dão origem a uma divisão.
"Uma lacuna foi exatamente o que encontramos em 'Rapid Burster'," comenta Nathalie Degenaar, pesquisdora do mesmo instituto e orientadora de doutoramento de Jakob. "Isto sugere fortemente que as explosões do tipo-II são provocadas pelo campo magnético."
As observações indicam a existência de um intervalo de aproximadamente 90 km entre a estrela de nêutrons e a orla interna do disco de acreção. Embora nada impressionante em termos de escalas cósmicas, o tamanho da lacuna é muito maior do que a própria estrela de nêutrons, que tem um raio de aproximadamente 10 km.
Este achado está em conformidade com os resultados de um estudo anterior publicado por Nathalie e colaboradores, que observaram uma divisão semelhante ao redor de "Bursting Pulsar", a outra fonte conhecida que produz explosões do tipo-II.
No novo estudo de "Rapid Burster", os cientistas também mediram a força do campo magnético da estrela de nêutrons: com 6,2 x 108 G (gauss), é cerca de bilhões de vezes mais forte do que o da Terra e, mais importante, mais de cinco vezes mais forte do que o de outras estrelas de nêutrons com uma companheira de baixa massa estelar.
Isto pode indicar uma jovem idade para este sistema binário, sugerindo que o processo de acreção não ocorreu ainda durante tempo suficiente para amortecer o campo magnético, como se pensa ter acontecido em sistemas semelhantes.
Se esta estrela de nêutrons é realmente tão jovem quanto o seu forte campo magnético parece indicar, então espera-se que gire muito mais devagar do que as suas homólogas mais velhas: as medições futuras da rotação da estrela podem ajudar a confirmar este cenário incomum.
"Este resultado é um grande passo na resolução de um puzzle com quarenta anos na astronomia de estrelas de nêutrons, ao mesmo tempo que revela novos detalhes sobre a interação entre campos magnéticos e discos de acreção nestes objetos exóticos," conclui Norbert Scharterl, cientista do projeto XMM-Newton na ESA.
Um artigo sobre o assunto foi publicado na revista Monthly Notices of the Royal Astronomical Society.
Fonte: ESA
Nenhum comentário:
Postar um comentário