Ao contrário de seus primos de tamanho estelar, que se formam após o colapso de uma estrela massiva, os buracos negros supermassivos nos centros das galáxias são simplesmente muito grandes para resultar da morte de uma única estrela.
© ESO/M. Kornmesser (ilustração da galáxia CR7)
Mesmo com a recente confirmação de buracos negros de massa intermediária, o mistério não foi resolvido. Enquanto os astrônomos aguardam ansiosamente novas observações através do telescópio espacial James Webb que finalmente tornará possível, eles continuam desenvolvendo teorias para explicar esses objetos misteriosos.
Os buracos negros supermassivos (SMBHs) possuem centenas de milhares a bilhões de massas solares. O buraco negro supermassivo Sgr A* no centro da Via Láctea, é cerca de 4,5 milhões de vezes a massa do Sol. Imagina-se que a formação de tais SMBHs de "massa mais baixa" (alguns milhões de massas solares) ocorre após a formação de um buraco negro "semente" de cerca de 100 massas solares. Um buraco negro deste tamanho é viável após o colapso de uma estrela extremamente massiva. Ao longo do tempo, essa semente acrescenta matéria e possivelmente até se funde com outras sementes próximas, construindo os buracos negros de milhões de massas solares que vemos hoje.
Mas os SMBHs que alimentam quasares jovens e distantes no Universo primitivo não podem ser explicados dessa maneira. O pesquisador John Regan, do Institute for Computational Cosmology da Universidade de Durham, no Reino Unido, e colegas descrevem um modelo para as circunstâncias do início do Universo que poderiam levar à criação de buracos negros de colapso direto (DCBHs). Os buracos negros de colapso direto são um tipo único de buraco negro que requer condições ambientais essencialmente perfeitas para se formar, condições que só existem no início do Universo.
Os quasares são realmente os discos de acreção em torno de um buraco negro supermassivo. Durante os primeiros anos de uma galáxia, tal disco de acreção pode se tornanr tão massivo que ele supera o resto da galáxia por completo, sendo identificado como um quasar. O buraco negro no centro de um quasar já é massivo, com milhões ou bilhões de vezes a massa do Sol. Mas no Universo jovem, simplesmente não houve tempo para acreção e fusões para fazer um buraco negro supermassivo tão grande. Além disso, qualquer estrela de primeira geração grande o suficiente para formar um buraco negro de sementes de quasar teria ventos estelares enormemente poderosos, soprando gás e poeira ao seu redor e sufocando sua capacidade de acumular matéria rapidamente uma vez que o buraco negro é formado.
Os DCBHs poderiam ser o mecanismo responsável por alimentar quasares distantes porque eles não precisam de combustível ou tempo para crescer a partir de algo pequeno. Em vez disso, eles formam grandes massas iniciais quando o gás dentro da galáxia colapsa diretamente em um buraco negro sem etapas entre eles. Se o gás dentro de uma galáxia se formando é aquecido sem esfriar e, em seguida, comprimido por um halo de matéria escura, as condições podem ser apenas favoráveis para formar um buraco negro de colapso direto. A ideia foi apresentada pela primeira vez em 2003 por Volker Bromm e Avi Loeb, e possível evidência para este tipo de buraco negro foi encontrado em 2016 com observações de uma galáxia chamada CR7.
Agora, Regan e seu grupo desenvolveram simulações para determinar se as interações entre protogaláxias vizinhas com aglomerados de galáxias poderiam provocar a formação de DCBH. Quando o gás é aquecido dentro de uma galáxia, ele normalmente "esfria" através de vários processos, sendo a formação de estrelas a mais comum e a emissão de energia a partir de metais, e é formado dentro do núcleo de uma estrela massiva. O truque para a criação de um DCBH é obter o gás para entrar em colapso sem permitir que esses processos de refrigeração ocorram.
Após várias simulações, o grupo de Regan encontrou um "ponto favorável" no qual o aquecimento da radiação de fundo associada ao aglomerado de galáxias, associado a um starburst (um período de formação estelar muito rápido e generalizado) numa protogaláxia próxima, pode conduzir à formação de um DCBH.
Existem várias condições que devem ser atendidas. A formação de buraco negro é mais provável quando o par de galáxias está separado por uma distância entre 200 e 300 parsecs (650 a 1.000 anos-luz). Se as galáxias estiverem muito próximas, o starburst poderia separar os átomos das moléculas do gás da galáxia ou simplesmente explodir o gás. Um starburst próximo poderia também "poluir" suas galáxias companheiras com metais ejetados para fora por suas supernovas; os metais iriam então arrefecer o gás e permitir que ele se fragmentasse em estrelas (em vez de formar uma DCBH). Mas se as galáxias estiverem muito distantes, elas simplesmente não interagem energicamente ou rapidamente o suficiente para que o starburst influencie sua vizinhança.
Além disso, a escalas de tempo do starburst e da formação de estrelas em protogaláxias vizinhas deverão estar "sincronizadas". Se o starburst acontece no momento errado, as galáxias vizinhas já terão começado a formação estelar e as condições para um DCBH não serão realizadas.
O tempo ideal para um starburst acender é de cerca de 4 milhões de anos antes das estrelas terem de outra forma começado a formar em sua vizinhança. Mas se o starburst acontecer mais de 10 milhões de anos antes da formação estelar começar, ele não terá o efeito desejado. Um starburst que dure por muito tempo afetará adversamente seus vizinhos através da poluição do metal ou da radiação excessivamente energética.
Regan e seus colegas afirmam que a observação de pares próximos de jovens protogaláxias com o futuro telescópio espacial James Webb poderia fornecer os dados necessários para provar o seu cenário de formação de DCBH.
Um artigo foi publicado na Nature Astronomy.
Fonte: Astronomy
Nenhum comentário:
Postar um comentário