O telescópio espacial Hubble fotografou diretamente evidências da formação de um protoplaneta do tipo Júpiter através de um processo intenso e violento.
© STScI (ilustração do exoplaneta AB Aurigae b)
Esta descoberta apoia uma teoria há muito debatida de como planetas como Júpiter se formam, chamada "instabilidade do disco".
O novo mundo em construção está embebido num disco protoplanetário de gás e poeira com uma estrutura espiral distinta que gira em torno de uma jovem estrela que se estima ter cerca de 2 milhões de anos. Trata-se da idade do nosso Sistema Solar quando a formação dos planetas estava em curso (a idade do Sistema Solar é atualmente de 4,6 bilhões de anos).
Todos os planetas são feitos de material com origem num disco circunstelar. A teoria dominante para a formação de um planeta joviano é chamada de "acreção do núcleo", uma abordagem de baixo para cima onde os planetas incorporados no disco crescem a partir de pequenos objetos - com tamanhos que vão desde grãos de poeira a rochas - colidindo e aglutinando-se à medida que orbitam uma estrela.
Em contraste, a abordagem de instabilidade do disco é um modelo de cima para baixo onde, à medida que um disco massivo em torno de uma estrela arrefece, a gravidade faz com que o disco se desfaça rapidamente num ou mais fragmentos de massa planetária. O planeta recentemente formado, chamado AB Aurigae b, é provavelmente cerca de nove vezes mais massivo do que Júpiter e orbita a sua estrela hospedeira a uma distância incrível de quase 14 bilhões de quilômetros, ou seja, mais de duas vezes a distância que separa Plutão do Sol. A essa distância, levaria muito tempo para que um planeta do tamanho de Júpiter se formasse por acreção do núcleo.
Isto leva os pesquisadores a concluir que a instabilidade do disco permitiu que este planeta se formasse a uma distância tão grande. E está num contraste impressionante com as expectativas de formação planetária pelo modelo amplamente aceito de acreção do núcleo.
© Subaru (exoplaneta AB Aurigae b)
A nova análise combina dados de dois instrumentos do Hubble: o STIS (Space Telescope Imaging Spectrograph) e o NICMOS (Near Infrared Camera and Multi-Object Spectrograph). Estes dados foram comparados com os de um instrumento de última geração chamado SCExAO (Subaru Coronagraphic Extreme-AO) acoplado ao Telescópio Subaru de 8,2 metros do Japão, localizado no cume do Mauna Kea, Havaí. A riqueza dos dados dos telescópios espaciais e terrestres revelou-se crítica, porque é muito difícil distinguir entre planetas infantis e características complexas de disco não relacionadas com os planetas. A própria natureza também deu uma ajuda: o vasto disco de poeira e gás que gira em torno da estrela AB Aurigae está inclinado para quase de face, da perspetiva da Terra.
No final, a gravidade é tudo o que conta, uma vez que os remanescentes do processo de formação estelar acabarão por ser puxados juntos pela atração gravitacional e para formar planetas. Compreender os primeiros dias da formação de planetas semelhantes a Júpiter proporciona aos astrônomos mais contexto na história do nosso próprio Sistema Solar. Esta descoberta abre caminhos para futuros estudos da composição química de discos protoplanetários como AB Aurigae, incluindo a exploração com o telescópio espacial James Webb da NASA.
Os resultados foram publicados na revista Nature Astronomy.
Fonte: National Astronomical Observatory of Japan
Nenhum comentário:
Postar um comentário