Pela primeira vez, astrônomos viram o brilho térmico de dois planetas gigantes gelados colidindo.
© Mark Garlick (ilustração da colisão de dois planetas gigantes)
Também puderam observar a nuvem de poeira resultante se movendo em frente da estrela progenitora vários anos mais tarde. Liderados pelo astrônomo Matthew Kenworthy, do Observatório de Leiden, os pesquisadores monitoraram as variações de brilho da estrela durante dois anos após esta ter começado a escurecer no visível.
Foi descoberto, por coincidência, que a estrela tinha duplicado o seu brilho em comprimentos de onda infravermelhos três anos antes. A estrela chama-se ASASSN-21qj. O seu nome vem da rede de telescópios que descobriu pela primeira vez o desvanecimento da estrela em comprimentos de onda visíveis. A estrela foi estudada intensivamente por uma rede de astrônomos amadores e profissionais, que observaram as mudanças de brilho.
Uma publicação casual de um pesquisador amador numa rede social levou à descoberta de que o sistema duplicou o seu brilho em comprimentos de onda infravermelhos cerca de três anos antes da estrela começar a desvanecer-se no visível. A missão norte-americana NEOWISE já tinha observado este fato.
A explicação mais provável é que dois exoplanetas gigantes de gelo colidiram um com o outro, produzindo o brilho infravermelho captado pela missão NEOWISE, e que a nuvem de detritos em expansão daí resultante se deslocou para a frente da estrela cerca de três anos mais tarde, fazendo com que o brilho da estrela diminuísse nos comprimentos de onda visíveis. A temperatura e o tamanho do material incandescente e a quantidade de tempo que o brilho durou é consistente com a colisão de dois exoplanetas gigantes de gelo, como inferido nos cálculos e modelos de computador.
Normalmente, os planetas gigantes escondem os seus elementos pesados sob espessas camadas de hidrogênio e hélio. No entanto, nesta colisão, o material do interior foi ejetado ou arrastado para as regiões exteriores do corpo criado pela fusão dos dois planetas. Neste processo foi liberado muito vapor de água que ajudou a arrefecer o corpo pós-impacto até 1000 K.
Ao longo dos próximos anos, a nuvem de poeira começará se espalhar ao longo da órbita do remanescente da colisão, e uma dispersão de luz desta nuvem pode ser detectada tanto com telescópios terrestres como com o telescópio espacial James Webb. Em última análise, a nuvem de material em torno do remanescente pode condensar-se para formar um cortejo de luas que vão orbitar em torno deste novo planeta.
Um artigo foi publicado na revista Nature.
Fonte: Universiteit Leiden
Nenhum comentário:
Postar um comentário