O Universo está se expandindo. A velocidade a que se expande é descrita pela chamada constante de Hubble-Lemaitre.
© U. Bonn (distribuição da matéria no espaço)
A imagem mostra a distribuição da matéria no espaço (azul; os pontos amarelos representam galáxias individuais). A Via Láctea (verde) encontra-se numa zona com pouca matéria. As galáxias na bolha movem-se na direção das densidades de matéria mais elevadas (setas vermelhas).
Mas há uma controvérsia acerca do valor preciso da constante de Hubble-Lemaitre: diferentes métodos de medição fornecem valores contraditórios. A chamada "tensão de Hubble" constitui um quebra-cabeças para os cosmólogos.
Os pesquisadores das Universidades de Bonn e de St. Andrews propõem agora uma nova solução: utilizando uma teoria alternativa da gravidade, a discrepância entre os valores medidos pode ser facilmente explicada, a tensão de Hubble desaparece.
A expansão do Universo faz com que as galáxias se afastem umas das outras. A velocidade a que o fazem é proporcional à distância que as separa. Por exemplo, se a galáxia A estiver duas vezes mais longe da Terra do que a galáxia B, a sua distância de nós também aumenta duas vezes mais depressa. O astrônomo americano Edwin Hubble foi um dos primeiros a reconhecer esta relação. Para calcular a velocidade a que duas galáxias se afastam uma da outra, é necessário saber a distância que as separa.
No entanto, isto também requer uma constante pela qual esta distância deve ser multiplicada. Esta é a chamada constante de Hubble-Lemaitre, um parâmetro fundamental em cosmologia. O seu valor pode ser determinado, por exemplo, observando as regiões muito distantes do Universo. Isto dá uma velocidade de quase 244.000 quilômetros por hora por megaparsec de distância (um megaparsec corresponde a pouco mais de três milhões de anos-luz).
Mas também podemos olhar para corpos celestes que estão muito mais perto de nós, as chamadas supernovas do Tipo Ia, que são uma determinada categoria de explosão estelar. É possível determinar com grande exatidão a distância de uma supernova do Tipo Ia à Terra. Também sabemos que os objetos brilhantes mudam de cor quando se afastam de nós, e quanto mais depressa se afastam, mais forte é a mudança. Isto é semelhante a uma ambulância, cuja sirene soa mais grave à medida que se afasta de nós. Se calcularmos a velocidade das supernovas do Tipo Ia a partir da sua mudança de cor e a correlacionarmos com a sua distância, chegamos a um valor diferente para a constante de Hubble-Lemaitre, ou seja, um pouco menos de 264.000 quilômetros por hora por megaparsec de distância.
O Universo parece, portanto, estar se expandindo mais rapidamente na nossa vizinhança, ou seja, até uma distância de cerca de três bilhões de anos-luz do que na sua totalidade. No entanto, foi recentemente feita uma observação que pode explicar este fato. De acordo com esta observação, a Terra está localizada numa região do espaço onde existe relativamente pouca matéria, comparável a uma bolha de ar num bolo. A densidade da matéria é maior à volta da bolha. As forças gravitacionais emanam desta matéria circundante, que puxa as galáxias na bolha para as orlas da cavidade.
Outro grupo de pesquisa mediu recentemente a velocidade média de um grande número de galáxias que se encontram a 600 milhões de anos-luz de nós. Descobriu-se que estas galáxias se afastam de nós quatro vezes mais depressa do que o modelo padrão da cosmologia permite. Isto deve-se ao fato de o modelo padrão não prever estas "bolhas", elas não deveriam realmente existir. Em vez disso, a matéria deveria estar distribuída uniformemente no espaço. Se fosse este o caso, seria difícil explicar quais as forças que impulsionam as galáxias para a sua alta velocidade.
Os pesquisadores utilizaram uma teoria da gravidade modificada numa simulação em computador. Esta "dinâmica newtoniana modificada" denominada MOND (Modified Newtonian dynamics) foi proposta há quatro décadas pelo físico israelita prof. Dr. Mordehai Milgrom. Atualmente, ainda é considerada uma teoria "forasteira". Contudo, nos cálculos desta pesquisa, a teoria MOND prevê com exatidão a existência de tais bolhas. Se se assumisse que a gravidade se comporta de acordo com os pressupostos de Milgrom, a tensão de Hubble desapareceria: haveria apenas uma constante para a expansão do Universo e os desvios observados deveriam ser irregularidades na distribuição da matéria.
Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.
Fonte: Universität Bonn
Nenhum comentário:
Postar um comentário