Com o atualizado instrumento GRAVITY do VLTI (Very Large Telescope Interferometer) do ESO, uma equipe de astrônomos liderada pelo Instituto Max Planck de Física Extraterrestre determinou a massa de um buraco negro numa galáxia apenas 2 bilhões de anos após o Big Bang.
© Cosmonovas (ilustração de um buraco negro)
Com 300 milhões de massas solares, o buraco negro é pouco massivo em comparação com a massa da sua galáxia hospedeira.
No Universo mais local, os astrônomos observaram relações íntimas entre as propriedades das galáxias e a massa dos buracos negros supermassivos que residem nos seus centros, sugerindo que as galáxias e os buracos negros coevoluem. Um teste crucial seria sondar esta relação nos primeiros tempos do cosmos, mas para estas galáxias longínquas os tradicionais métodos diretos de medição da massa do buraco negro são impossíveis ou extremamente difíceis.
Apesar destas galáxias brilharem frequentemente com muita intensidade, denominadas quasares quando descobertas na década de 1950, estão tão distantes que não podem ser detectadas pela maioria dos telescópios.
Em 2018, foram efetuadas as primeiras medições inovadoras da massa de um buraco negro de um quasar com o GRAVITY. No entanto, este quasar estava muito próximo. Agora, foi atingido um desvio para o vermelho de 2,3, o que corresponde a observar 11 bilhões de anos para trás no tempo. O GRAVITY+ abre agora um caminho novo e preciso para estudar o crescimento dos buracos negros nesta época crítica, frequentemente designada por "meio-dia cósmico", quando tanto os buracos negros como as galáxias estavam crescendo rapidamente.
Atulamente é possível obter imagens de buracos negros no Universo inicial, 40 vezes mais nítidas do que é obtido com o telescópio espacial James Webb. O GRAVITY combina interferometricamente os quatro telescópios de 8 metros do VLT do ESO, criando essencialmente um telescópio virtual gigante com um diâmetro de 130 metros.
A equipa foi capaz de resolver espacialmente o movimento das nuvens de gás em torno do buraco negro central da galáxia SDSS J092034.17+065718.0, à medida que giram num disco espesso. Isto permite uma medição direta da massa do buraco negro. Com 320 milhões de massas solares, a massa do buraco negro é inferior à da galáxia que o acolhe, que tem uma massa de cerca de 600 bilhões de massas solares. Este fato sugere que a galáxia hospedeira cresceu mais depressa do que o buraco negro supermassivo, indicando, em alguns sistemas, um atraso entre o crescimento da galáxia e o do buraco negro.
O cenário provável para a evolução desta galáxia parece ser uma forte atividade de supernova, no qual estas explosões estelares expulsam o gás das regiões centrais antes que este possa atingir o buraco negro no centro galáctico. O buraco negro só pode começar a crescer rapidamente e a acompanhar o crescimento global da galáxia quando a galáxia se tiver tornado suficientemente massiva para reter um reservatório de gás nas suas regiões centrais, mesmo contra a atividade de supernova.
Para determinar se este cenário é também o modo dominante da coevolução de outras galáxias e dos seus buracos negros centrais, a equipe vai fazer um acompanhamento com mais medições altamente precisas da massa de buracos negros no Universo primitivo.
Um artigo foi publicado na revista Nature.
Fonte: Max Planck Institute for Extraterrestrial Physics
Nenhum comentário:
Postar um comentário