sábado, 2 de abril de 2022

Hubble encontra a estrela mais distante

O telescópio espacial Hubble estabeleceu uma nova e extraordinária referência: a detecção da luz de uma estrela que existiu nos primeiros bilhões de anos após o nascimento do Universo no Big Bang, a estrela individual mais distante alguma vez vista até agora.

© STScI (estrela Earendel)

A descoberta é um enorme salto no tempo em relação à anterior detentora estelar do recorde; detectada pelo Hubble em 2018. Esta estrela existiu quando o Universo tinha cerca de 4 bilhões de anos, ou 30% da sua idade atual, num instante em que o "desvio para o vermelho" é de 1,5. 

O termo "desvio para o vermelho" está relacionado à expansão do Universo, pois a luz de objetos distantes é esticada ou "desviada" para comprimentos de onda mais longos e avermelhados à medida que viaja na nossa direção.

A estrela recentemente detectada está tão longe que a sua luz levou 12,9 bilhões de anos para chegar à Terra, situada num momento em que o Universo tinha apenas 7% da sua idade atual, e um desvio para o vermelho de 6,2.

Os objetos menores anteriormente vistos a uma distância tão grande são aglomerados de estrelas, embebidos dentro das primeiras galáxias. 

A descoberta foi feita a partir de dados recolhidos durante o programa RELICS (Reionization Lensing Cluster Survey), liderado por Dan Coe no STScI (Space Telescope Science Institute).

A galáxia que acolhe esta estrela, chamada Earendel, foi ampliada e distorcida por uma lente gravitacional num longo crescente de nominado Arco do Sol Nascente. 

A descoberta contém a promessa de abrir uma era desconhecida de formação estelar muito precoce. Earendel existiu há tanto tempo que não pode ter tido todas as mesmas matérias-primas que as estrelas que nos rodeiam hoje. 

A equipe estima que Earendel tem pelo menos 50 vezes a massa do nosso Sol e é milhões de vezes mais brilhante, rivalizando com as estrelas mais massivas conhecidas. Mas mesmo uma estrela tão brilhante e massiva seria impossível de ver a uma distância tão grande sem a ajuda da ampliação natural por um enorme aglomerado de galáxias, WHL0137-08, situado entre nós e Earendel. A massa do aglomerado de galáxias distorce o tecido do espaço, criando uma poderosa lupa natural que curva e amplia a luz de objetos distantes por trás dele. 

Graças ao raro alinhamento com o aglomerado de galáxias de ampliação, a estrela Earendel aparece diretamente sobre, ou extremamente perto, de uma ondulação no tecido do espaço. Esta ondulação, que é definida na óptica como "cáustica", proporciona uma ampliação e aumento de brilho máximo. O efeito é análogo à superfície ondulada de uma piscina, criando padrões de luz brilhante no fundo da piscina num dia de Sol. As ondulações à superfície atuam como lentes e focam a luz solar ao brilho máximo no fundo da piscina. Esta cáustica faz com que a estrela Earendel "salte à vista" do brilho geral da sua galáxia natal. O seu brilho é ampliado mil vezes ou mais. 

Neste ponto, os astrônomos não são capazes de determinar se Earendel é uma estrela binária, embora a maioria das estrelas massivas tenham pelo menos uma estrela companheira menor. 

Os astrônomos esperam que Earendel permaneça altamente ampliada nos próximos anos. Será observada pelo telescópio espacial James Webb da NASA. A alta sensibilidade do Webb à luz infravermelha é necessária para aprender mais sobre Earendel, porque a sua luz é esticada para comprimentos de onda infravermelhos mais longos devido à expansão do Universo.

Estes detalhes irão restringir o seu tipo e fase no ciclo de vida estelar. Também espera-se descobrir que a galáxia do Arco do Sol nascente carece de elementos pesados que se formam nas gerações seguintes de estrelas. Isto sugere que Earendel é uma rara e massiva estrela pobre em metal. A composição de Earendel será de grande interesse, pois formou-se antes do Universo ser preenchido com os elementos pesados produzidos por sucessivas gerações de estrelas massivas. Se estudos posteriores descobrirem que Earendel é apenas composta por hidrogênio e hélio primordiais, seria a primeira evidência para as lendárias estrelas de População III, que são teorizadas como sendo as primeiras estrelas nascidas após o Big Bang.

Será que o telescópio espacial James Webb irá bater o recorde de distância de Earendel? 

Um artigo sobre a descoberta foi publicado na revista Nature.

Fonte: Space Telescope Science Institute

sexta-feira, 1 de abril de 2022

A morte misteriosa de uma estrela de carbono

Cientistas que estudavam V Hydrae (V Hya) testemunharam o misterioso "leito de morte" da estrela em detalhes sem precedentes.


© NRAO (ilustração da estrela V Hydrae)

Usando o ALMA (Atacama Large Millimeter/submillimeter Array) e dados do telescópio espacial Hubble, a equipe descobriu seis anéis em expansão lenta e duas estruturas em forma de ampulheta provocadas pela ejeção de matéria em alta velocidade para o espaço.

V Hya é uma estrela AGB (Asymptotic Giant Branch) rica em carbono localizada a aproximadamente 1.300 anos-luz da Terra na direção da constelação de Hidra. Mais de 90% das estrelas com uma massa igual ou superior à do Sol evoluem para estrelas AGB à medida que o combustível necessário para alimentar os processos nucleares é removido. 

Entre estes milhões de estrelas, V Hya tem sido de particular interesse para os cientistas devido aos seus comportamentos e características tão singulares, incluindo erupções de plasma a escalas extremas que ocorrem aproximadamente a cada 8,5 anos e a presença de uma estrela companheira quase invisível que contribui para o comportamento explosivo de V Hya.

"O nosso estudo confirma dramaticamente que o modelo tradicional de como as estrelas AGB morrem - através da ejeção em massa de combustível via um vento lento, relativamente estável e esférico ao longo de 100.000 anos ou mais - está, na melhor das hipóteses, incompleto, ou na pior, incorreto," disse Raghvendra Sahai, astrônomo no Jet Propulsion Laboratory (JPL) da NASA e pesquisador principal do estudo. 

No caso de V Hya, a combinação de uma estrela companheira próxima e de uma hipotética companheira distante é responsável, pelo menos em certa medida, pela presença dos seus anéis e pelos fluxos velozes que estão provocando a morte miraculosa da estrela. V Hydra foi apanhada no processo de libertação da sua atmosfera, com a maior parte da sua massa, o que é algo que a maioria das estrelas gigantes vermelhas em fase final fazem.

Os seis anéis expandiram-se para longe de V Hya ao longo de mais ou menos 2.100 anos, acrescentando matéria e impulsionando o crescimento de uma estrutura de alta densidade em forma de disco deformado à volta da estrela. 

Para além de um conjunto completo de anéis em expansão e de um disco deformado, o ato final de V Hya apresenta duas estruturas em forma de ampulheta, e uma estrutura adicional em forma de jato, que estão se expandindo com velocidades elevadas de mais de 240 km/s. Estas estruturas em forma de ampulheta já tinham sido observadas anteriormente em nebulosas planetárias, incluindo MyCn 18, também chamada de Nebulosa da Ampulheta, uma jovem nebulosa de emissão localizada a cerca de 8.000 anos-luz da Terra na direção da constelação do hemisfério sul da Mosca, e na mais conhecida Nebulosa Caranguejo do Sul, uma nebulosa de emissão localizada a aproximadamente 7.000 anos-luz da Terra na direção da constelação de Centauro.

Devido tanto à distância como à densidade da poeira que envolve a estrela, o estudo de V Hya exigiu um instrumento único com o poder de ver claramente a matéria que está ao mesmo tempo muito longe e é também difícil ou impossível de detectar com a maioria dos telescópios ópticos. A equipe alistou os receptores de Banda 6 (1,23 mm) e Banda 7 (0,85 mm) do ALMA, que revelaram os múltiplos anéis e os fluxos da estrela com grande clareza.

Os resultados do estudo foram publicados no periódico The Astrophysical Journal.

Fonte: National Radio Astronomy Observatory

quinta-feira, 31 de março de 2022

Estrela de nêutrons devora estrela comum e libera gases no espaço

Cientistas flagraram uma estrela de nêutrons, um objeto extremamente denso e com fortes campos magnéticos, devorando sua estrela companheira em um sistema binário.

© IAC (ilustração de uma estrela comum e uma estrela de nêutrons)

Com esforços coordenados de diversos telescópios, foi observado pela primeira vez a emissão de “ventos” de diferentes classes. O sistema binário em questão é classificado como um binário emissor de raios X de massa baixa (LMXB). Esta classe é composta por um objeto compacto – uma estrela de nêutrons ou um buraco negro – e uma estrela comum, orbitando um ao outro. Devido a sua grande proximidade, parte do material da estrela comum é atraído pelo objeto compacto, “devorando-o” em um processo conhecido como acreção. Porém, parte desse material é lançado ao espaço, formando um disco de acreção, emissões de jato verticais ou até “ventos”, projetados ao seu redor.

“Estrelas de nêutrons possuem um campo gravitacional incrivelmente forte, que as permite englobar o gás de outras estrelas. No entanto, essas canibais estelares desperdiçam  muito do gás, que são lançados no espaço em altas velocidades. Esse comportamento tem grande impacto tanto na própria estrela de nêutrons como nos seus entornos. 

Nesse estudo, foi relatado uma nova descoberta que provém informações essenciais sobre os padrões de alimentação desleixados desses monstros cósmicos. A descoberta se refere aos tipos de “ventos” detectados no estudo. O grupo observou um “evento de raios X transientes” neste LMXB, uma espécie de erupção na qual uma grande quantidade de gás foi arrancada de uma vez, liberando energia e radiação eletromagnética que pode ser observada da Terra para determinar as características da emissão.

O Swift J1858, nome dado a este evento, liberou ao mesmo tempo “ventos” amenos, observados no espectro ultravioleta, e “ventos” frios, analisados no espectro visível, uma combinação nunca antes observada para um sistema desse tipo. Apesar da maioria das emissões de gases de objetos astronômicos serem classificadas como “ventos” amenos, até agora só foram detectados eventos de raios X transientes com “ventos” frios ou quentes, nunca ambos ao mesmo tempo. 

Normalmente as erupções estão obscurecidas por pó interestelar, o que dificulta muito sua observação. O Swift J1858 foi especial, pois, mesmo localizado do outro lado da galáxia, o obscurecimento foi pequeno o suficiente para permitir um estudo em diversos comprimentos de onda. Apesar dos LMXB estarem sempre ativos, os eventos de raios X transientes têm curta duração. Somente um outro LMXB, nomeado V404 Cyg, demonstrou propriedades similares, mas os cientistas não tiveram tempo de mobilizar os telescópios espaciais e terrestres para observá-lo simultaneamente. 

Além de descobrir os novos tipos de emissões de gases, a equipe também estudou sua evolução ao longo do evento. Nessa análise, foi identificado que “ventos” amenos continuaram a ser emitidos, independentemente do brilho do sistema, uma descoberta que confirmou estudos teóricos anteriores. 

Esse estudo ajudará a entender as interações desses objetos em situações extremas, além de contribuir para pesquisas de evolução estelar. 

Um artigo foi publicado na revista Nature

Fonte: Scientific American

quarta-feira, 30 de março de 2022

Mapeado o movimento das anãs brancas na Via Láctea

As anãs brancas foram outrora estrelas normais semelhantes ao Sol, mas que colapsaram depois de esgotarem todo o seu combustível.

© STScI (ilustração de uma anã branca)

Estes remanescentes interestelares têm sido historicamente difíceis de estudar. No entanto, um estudo recente da Universidade de Lund, na Suécia, revela novas informações sobre os padrões de movimento destas estrelas intrigantes.

As anãs brancas têm um raio de cerca de 1% do raio do Sol. Têm aproximadamente a mesma massa, o que significa que têm uma densidade surpreendente de cerca de 1 tonelada por centímetro cúbico. Após milhares de milhões de anos, as anãs brancas arrefecem até um ponto em que deixam de emitir luz visível e transformam-se nas chamadas anãs negras. 

A primeira anã branca descoberta foi 40 Eridani A. É um corpo celeste brilhante a 16,2 anos-luz da Terra, rodeado por um sistema binário composto pela anã branca 40 Eridani B e pela anã vermelha 40 Eridani C. Desde que foi descoberta em 1783 que os astrônomos têm tentado aprender mais sobre as anãs brancas a fim de adquirirem uma compreensão mais profunda da história evolutiva da nossa Galáxia. 

Num estudo, pesquisadores apresentaram novas descobertas sobre a forma como as estrelas colapsadas se movem. "Graças às observações do telescópio espacial Gaia, conseguimos pela primeira vez revelar a distribuição tridimensional da velocidade para o maior catálogo de anãs brancas até à data. Isto dá-nos uma imagem detalhada da sua estrutura de velocidade com detalhes inigualáveis," diz Daniel Mikkola, estudante de doutoramento em astronomia na Universidade de Lund.

O Gaia propiciou aos astrônomos medirem posições e velocidades para cerca de 1,5 bilhões de estrelas. Mas só recentemente foram capazes de se concentrar completamente nas anãs brancas na vizinhança solar.

"Conseguimos mapear as velocidades das anãs brancas e os padrões de movimento. O Gaia revelou que existem duas sequências paralelas de anãs brancas ao olhar para a sua temperatura e brilho. Se as estudarmos separadamente, podemos ver que elas provavelmente se movem de modo diferente, provavelmente como consequência de terem massas e vidas diferentes," diz Mikkola. 

Os resultados podem ser utilizados para desenvolver novas simulações e modelos para continuar mapeando a história e desenvolvimento da Via Láctea. Através de um maior conhecimento das anãs brancas, os pesquisadores esperam ser capazes de esclarecer uma série de dúvidas em torno do nascimento da Via Láctea. 

"Este estudo é importante porque aprendemos mais sobre as regiões mais próximas na nossa Galáxia. Os resultados também são interessantes porque a nossa própria estrela, o Sol, irá um dia transformar-se numa anã branca como 97% de todas as estrelas na Via Láctea," conclui Mikkola.

O estudo publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Lund University

segunda-feira, 28 de março de 2022

Atingido o marco de 5.000 exoplanetas descobertos

Não há muito tempo, vivíamos num Universo com apenas um pequeno número de planetas conhecidos, todos eles em órbita do nosso Sol.

© NASA/JPL-Caltech (variedade de exoplanetas)

Mas uma nova fornada de descobertas assinala um marco científico: foram agora confirmados, no total, mais de 5.000 planetas localizados para lá do nosso Sistema Solar. O odômetro planetário rodou a 21 de março, com o lote mais recente de 65 exoplanetas adicionado ao Arquivo de Exoplanetas da NASA.

O arquivo registra as descobertas de exoplanetas que aparecem em artigos científicos revistos por pares e que foram confirmados utilizando múltiplos métodos de detecção ou por técnicas analíticas. Os mais de 5.000 planetas encontrados até agora incluem mundos pequenos e rochosos como a Terra, gigantes de gás muitas vezes maiores que Júpiter e "Júpiteres quentes" em órbitas abrasadoramente íntimas em torno das suas estrelas. Existem "super-Terras", que são mundos rochosos maiores do que o nosso, e "mini-Netunos", versões menores do que Netuno do nosso Sistema Solar.

Acrescente-se à mistura planetas que orbitam duas estrelas ao mesmo tempo e planetas que teimam em orbitar os remanescentes estelares de estrelas moribundas. A Via Láctea contém provavelmente centenas de bilhões de exoplanetas. 

A batida constante da descoberta começou em 1992 com estranhos novos mundos em órbita de uma estrela ainda mais estranha. Era um tipo de estrela de nêutrons conhecida como pulsar, um cadáver estelar com rotação rápida que pulsa com rajadas de radiação de milissegundos. A medição de ligeiras alterações no tempo dos pulsos permitiu aos cientistas revelar planetas em órbita em torno do pulsar. A descoberta de apenas três planetas em torno desta estrela giratória abriu essencialmente as comportas.

O TESS (Transiting Exoplanet Survey Satellite), lançado em 2018, continua fazendo novas descobertas exoplanetárias. Mas em breve os poderosos telescópios de próxima geração e os seus instrumentos altamente sensíveis, começando pelo recentemente lançado telescópio espacial James Webb, irão captar luz das atmosferas dos exoplanetas, identificando quais os gases presentes para potencialmente identificar sinais indicadores de condições habitáveis.

O telescópio espacial Nancy Grace Roman, cujo lançamento está previsto para 2027, fará novas descobertas de exoplanetas utilizando uma variedade de métodos. A missão ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) da ESA, com lançamento previsto para 2029, irá observar as atmosferas de exoplanetas.

A estreita ligação entre a química da vida na Terra e a química encontrada por todo o Universo, bem como a detecção de moléculas orgânicas disseminadas, sugere que a detecção da própria vida é apenas uma questão de tempo. 

Este quadro nem sempre pareceu tão promissor. O primeiro planeta detectado em torno de uma estrela parecida com o Sol, em 1995, revelou-se um Júpiter quente: um gigante gasoso com cerca de metade da massa do planeta Júpiter numa órbita extremamente íntima, de quatro dias, em torno da sua estrela. 

Alguns exoplanetas foram encontrados utilizando o método de "oscilação": o rastreamento de movimentos ligeiros de uma estrela, provocados pela atração gravitacional de planetas em órbita. Mas mesmo assim, nada parecia ser habitável. A descoberta de mundos pequenos e rochosos como o nosso exigiu o próximo grande salto na tecnologia de caça exoplanetária: o método de "trânsito".

O astrônomo William Borucki, pesquisador principal da missão Kepler, missão lançada em 2009 e está agora aposentada, teve a ideia de fixar detectores de luz extremamente sensíveis a um telescópio, lançando-o depois para o espaço. O telescópio olharia durante anos para um campo com mais de 170.000 estrelas, à procura de pequenas quedas no brilho das estrelas quando um planeta passava em frente, do ponto de vista do Sistema Solar.

Fonte: Jet Propulsion Laboratory

quarta-feira, 23 de março de 2022

Nuvem gigante de detritos criada por choque entre corpos celestes

A maioria dos planetas rochosos e satélites do nosso Sistema Solar, incluindo a Terra e a Lua, foram formados ou moldados por colisões massivas no início da história do Sistema Solar.

© NASA/JPL-Caltech (ilustração de nuvem de detritos bloqueando uma estrela)

Ao chocarem uns com os outros, os corpos rochosos podem acumular mais material, aumentando de tamanho, ou podem desfazer-se em múltiplos corpos menores.

Os astrônomos, usando o agora aposentado telescópio espacial Spitzer da NASA, encontraram no passado evidências destes tipos de colisões em torno de estrelas jovens, onde planetas rochosos estão sendo formados. Mas estas observações não forneceram muitos detalhes sobre as colisões, tais como o tamanho dos objetos envolvidos.

Num novo estudo, um grupo de astrônomos da Universidade do Arizona relatou as primeiras observações de uma nuvem de detritos de uma destas colisões ao passar em frente da sua estrela e ao bloquear brevemente a luz. Juntamente com o conhecimento sobre o tamanho e brilho da estrela, as observações permitiram a determinação do tamanho da nuvem pouco depois do impacto, a estimativa do tamanho dos objetos que colidiram e a velocidade com que a nuvem se dispersou.

A partir de 2015, a equipa começou a fazer observações de rotina de uma estrela com 10 milhões de anos chamada HD 166191. Por volta desta fase inicial da vida de uma estrela, a poeira que sobra da sua formação junta-se para formar corpos rochosos chamados planetesimais. Assim que o gás que anteriormente preenchia o espaço entre estes objetos se dispersa, colisões catastróficas entre eles tornam-se comuns. 

Antevendo que poderiam ver evidências de uma destas colisões em torno de HD 166191, a equipe utilizou o Spitzer para realizar mais de 100 observações do sistema entre 2015 e 2019. Embora os planetesimais sejam demasiado pequenos e distantes para serem resolvidos por telescópio, as suas colisões produzem grandes quantidades de poeira.

O Spitzer detectou luz infravermelha, ou seja, comprimentos de onda ligeiramente superiores ao que os olhos humanos podem ver. O infravermelho é ideal para detectar poeira, incluindo os detritos criados por colisões entre protoplanetas. Em meados de 2018, o telescópio espacial viu o sistema HD 166191 tornar-se significativamente mais brilhante, sugerindo um aumento na produção de detritos. Durante este tempo, o Spitzer também detectou uma nuvem de detritos bloqueando a estrela. Combinando a observação do trânsito pelo Spitzer com as observações por telescópios no solo, a equipe pôde deduzir o tamanho e a forma da nuvem de detritos. 

O seu trabalho sugere que a nuvem era altamente alongada, com uma área mínima estimada três vezes maior do que a estrela. No entanto, a quantidade de aumento de brilho infravermelho que o Spitzer viu sugere que apenas uma pequena parte da nuvem passou em frente da estrela e que os detritos deste evento cobriram uma área centenas de vezes maior do que a da estrela.

Para produzir uma nuvem tão grande, os objetos na colisão principal devem ter sido do tamanho de planetas anões, como Vesta no nosso Sistema Solar, um objeto com 530 km de diâmetro localizado no cinturão principal de asteroides entre Marte e Júpiter.

O choque inicial gerou energia e calor suficientes para vaporizar parte do material. Também desencadeou uma reação em cadeia de impactos entre fragmentos da primeira colisão e outros pequenos corpos no sistema, o que provavelmente criou uma quantidade significativa de poeira que o Spitzer observou. Nos meses seguintes, a grande nuvem de poeira cresceu em tamanho e tornou-se mais translúcida, indicando que a poeira e outros detritos estavam rapidamente se dispersando pelo jovem sistema estelar.

Em 2019, a nuvem que passava em frente da estrela já não era visível, mas o sistema continha o dobro da poeira que tinha antes do Spitzer ter avistado a nuvem. Esta informação pode ajudar os cientistas a testar teorias sobre como os planetas terrestres se formam e crescem.

Olhando para discos poeirentos de detritos em torno de estrelas jovens, é possível essencialmente olhar para trás no tempo e ver os processos que podem ter moldado o nosso próprio Sistema Solar. Aprendendo sobre o resultado das colisões nestes sistemas, podemos também ter uma melhor ideia da frequência com que os planetas rochosos se formam em torno de outras estrelas.

O novo estudo foi publicado no periódico The Astrophysical Journal.

Fonte: Jet Propulsion Laboratory

sábado, 19 de março de 2022

Estrela minúscula libera feixe gigantesco de matéria e antimatéria

Os astrônomos fotografaram um feixe de matéria e antimatéria com mais de 60 trilhões de quilômetros com o observatório de raios X Chandra.

© Chandra/Gemini (pulsar PSR J2030+4415)

O campo de visão de médio alcance mostra cerca de um-terço do comprimento de um filamento extremamente longo do pulsar. A imagem de grande plano mostra onde os raios X são criados pelas partículas que trafegam em torno do próprio pulsar, que tem apenas 16 km de diâmetro.

O feixe de raios X é alimentado por um pulsar, uma estrela colapsada com rotação rápida e um forte campo magnético. Com a sua tremenda escala, este feixe pode ajudar a explicar o número surpreendentemente grande de pósitrons, os homólogos de antimatéria dos elétrons, por toda a Via Láctea. 

Os astrônomos descobriram pela primeira vez o feixe, ou filamento, em 2020, mas não sabiam o seu comprimento total porque se estendia para lá do limite do detector do Chandra. Novas observações do Chandra feitas pelo mesmo par de pesquisadores em fevereiro e novembro de 2021 mostram que o filamento é cerca de três vezes mais longo do que o originalmente visto. O filamento abrange cerca de metade do diâmetro da Lua Cheia no céu, tornando-o o feixe mais longo de um pulsar, a partir do ponto de vista da Terra.

O pulsar denominado PSR J2030+4415 está localizado a cerca de 1.600 anos-luz da Terra. Este objeto do tamanho de uma cidade gira cerca de três vezes por segundo. Este resultado pode fornecer uma nova visão sobre a fonte de antimatéria da Via Láctea, que é semelhante à matéria comum, mas com as suas cargas elétricas invertidas.

A grande maioria do Universo consiste de matéria comum e não antimatéria. Contudo, os cientistas continuam encontrando evidências de um número relativamente grande de pósitrons em detectores na Terra, o que leva à questão: quais são as possíveis fontes desta antimatéria? 

Os pesquisadores do novo estudo do Chandra pensam que pulsares como PSR J2030+4415 podem ser uma resposta. A combinação de dois extremos - a rotação veloz e os fortes campos magnéticos dos pulsares - leva à aceleração de partículas e radiação altamente energética que cria pares de elétrons e pósitrons (o processo habitual de conversão de massa em energia, famoso pela equação E=m.c² de Albert Einstein, é invertido, e a energia é convertida em massa). O pulsar pode estar expelindo estes pósitrons para a Galáxia. 

Os pulsares geram ventos de partículas carregadas que estão normalmente confinados dentro dos seus poderosos campos magnéticos. O pulsar viaja através do espaço interestelar a cerca de 1,6 milhões de quilômetros por hora. Um choque de gás na proa move-se em frente do pulsar, semelhante ao acumular de água na frente de um barco em movimento. No entanto, há cerca de 20 a 30 anos, o movimento de choque da proa parece ter estagnado, e o pulsar apanhou-o, resultando numa interação com o campo magnético interestelar que corre quase em linha reta da esquerda para a direita.

O campo magnético do vento pulsar ligou-se ao campo magnético interestelar e os elétrons e pósitrons altamente energéticos foram "esguichados" através de um bocal formado pela ligação. À medida que as partículas se moviam ao longo desta linha do campo magnético interestelar a cerca de um-terço da velocidade da luz, tornaram-se brilhantes em raios X. Isto produziu o feixe longo visto pelo Chandra.

Anteriormente, os astrônomos observaram grandes halos em torno de pulsares próximos em raios gama que implicam que os pósitrons energéticos geralmente têm dificuldade em "vazar" para a Galáxia. Isto anula a ideia de que os pulsares explicam o excesso de pósitrons que os cientistas detectam. No entanto, filamentos de pulsares recentemente descobertos, como PSR J2030+4415, mostram que as partículas podem realmente escapar para o espaço interestelar e eventualmente chegar à Terra.

O artigo que descreve estes resultados aparecerá no periódico The Astrophysical Journal

Fonte: Harvard-Smithsonian Center for Astrophysics

quarta-feira, 16 de março de 2022

Observado o início do nascimento de planetas num sistema estelar binário

Astrônomos observaram, com um detalhe sem precedentes, material primordial que pode estar originando três sistemas planetários em torno de uma estrela binária.

© ESO/ALMA (poeira nos discos em torno de SVS 13)

Reunindo três décadas de estudo, um grupo internacional de cientistas observou um par de estrelas em órbita para revelar que estas estrelas estão rodeadas por discos de gás e poeira.

A pesquisa mostra que o material dentro dos discos recentemente descobertos pode ser o início de novos sistemas planetários que, no futuro, vão orbitar as estrelas binárias. Usando o VLA (Very Large Array) e o ALMA (Atacama Large Millimeter/Submillimeter Array), o grupo científico estudou a estrela binária SVS 13, ainda na sua fase embrionária.

Este trabalho forneceu a melhor descrição disponível até à data de um sistema binário em formação. Os modelos de formação planetária sugerem que os planetas se formam pela lenta agregação de gelo e partículas de poeira, em discos protoplanetários e em torno de estrelas em formação. Normalmente estes modelos consideram apenas estrelas únicas, tais como o Sol. No entanto, a maioria das estrelas formam sistemas binários, nos quais duas estrelas giram em torno de um centro comum. 

Ainda se sabe muito pouco sobre como nascem os planetas em torno destes importantes sistemas com estrelas gêmeas, nos quais a interação gravitacional entre as duas estrelas desempenha um papel essencial.

Os resultados revelaram que cada estrela tem um disco de gás e poeira ao seu redor e que, além disso, está se formando um disco maior em torno de ambas as estrelas. Este disco exterior mostra uma estrutura em espiral que alimenta os discos individuais e em todos eles os sistemas planetários poderiam formar-se no futuro. Isto é uma clara evidência da presença de discos em torno de ambas as estrelas e da existência de um disco comum num sistema binário.

O sistema binário SVS 13, constituído por dois embriões estelares com uma massa total semelhante à do Sol, está relativamente perto de nós, a cerca de 980 anos-luz de distância na nuvem molecular de Perseu, permitindo o seu estudo detalhado. As duas estrelas do sistema estão muito próximas uma da outra, com uma distância de apenas cerca de noventa vezes a distância entre a Terra e o Sol. 

O trabalho permitiu estudar a composição de gás, poeira e matéria ionizada no sistema. Além disso, foram identificadas quase trinta moléculas diferentes em torno de ambas as protoestrelas, incluindo treze moléculas orgânicas complexas precursoras da vida (sete delas detectadas pela primeira vez neste sistema).

A equipe utilizou as observações de SVS 13 obtidas pelo VLA ao longo de trinta anos, juntamente com os novos dados do ALMA, e acompanhou o movimento de ambas as estrelas ao longo deste período, o que permitiu rastrear a sua órbita, bem como a geometria e orientação do sistema, juntamente com muitos parâmetros fundamentais, tais como a massa das protoestrelas, a massa dos discos e a sua temperatura.

Um detalhe surpreendente foi a descoberta de que SVS 13 era um binário de rádio, porque apenas uma estrela é vista no óptico. Normalmente, são detectados embriões estelares no rádio, mas só se tornam visíveis no final do processo de gestação. Foi muito estranho a descoberta de um par de estrelas gêmeas onde uma delas parecia ter evoluído muito mais rapidamente do que a outra. Foi concebida várias experiências para obter mais detalhes e verificar se qualquer uma das estrelas poderia formar planetas. Agora nota-se que ambas as estrelas são muito jovens e que ambas podem formar planetas.

O sistema binário SVS 13 tem gerado muito debate na literatura científica, uma vez que alguns estudos o consideram extremamente jovem e outros o consideram estar numa fase posterior. Este novo estudo, provavelmente o mais completo de um sistema estelar binário em formação, não só evidencia detalhes sobre a natureza das duas protoestrelas e do seu ambiente, como também fornece parâmetros cruciais para testar simulações numéricas das fases iniciais da formação de um sistema binário e de um sistema múltiplo.

A pesquisa foi publicada no periódico The Astrophysical Journal.

Fonte: University of Manchester

segunda-feira, 14 de março de 2022

Olho da Galáxia

Esta imagem finamente detalhada mostra o coração de NGC 1097, uma galáxia espiral barrada que fica a cerca de 48 milhões de anos-luz da Terra na constelação de Fornax.

© Hubble (NGC 1097)

Esta imagem revela a complexidade da teia de estrelas e poeira no centro de NGC 1097, com os longos tentáculos de poeira destacados em um tom vermelho escuro. 

A extensão em que a estrutura da galáxia é revelada é graças a dois instrumentos no telescópio espacial Hubble: a Wide Field Camera 3 (WFC3) e a Advanced Camera for Surveys (ACS). 

A ideia de que uma única imagem pode ser tirada usando duas câmeras diferentes não é muito intuitiva. No entanto, faz muito mais sentido depois de analisar como belas imagens astronômicas como esta são compostas. 

Um ponto de partida útil é considerar exatamente o que é a cor. Nossos olhos podem detectar ondas de luz em comprimentos de onda ópticos entre aproximadamente 380 e 750 nanômetros, usando três tipos de receptores, cada um dos quais é sensível a apenas uma fatia deste intervalo. Nosso cérebro interpreta estes comprimentos de onda específicos como cores. 

Por outro lado, uma câmera de telescópio como a WFC3 ou ACS é sensível a uma única e ampla faixa de comprimentos de onda para maximizar a quantidade de luz coletada. As imagens brutas dos telescópios estão sempre em escala de cinza, mostrando apenas a quantidade de luz captada em todos estes comprimentos de onda. 

Imagens coloridas de telescópios são indiretamente possíveis, no entanto, com a ajuda de filtros. Ao introduzir um filtro sobre a abertura de um instrumento como o WFC3 ou ACS, apenas a luz de uma faixa de comprimento de onda muito específica é deixada passar; um destes filtros usados ​​nesta imagem é para luz verde em torno de 555 nanômetros. Isso produz uma imagem em escala de cinza mostrando apenas a quantidade de luz com este comprimento de onda. Esta imagem multicolorida do NGC 1097 é composta por imagens usando sete filtros diferentes no total.

Fonte: ESA

Uma hipnotizante espiral dourada

Esta imagem mostra a galáxia NGC 4254, também conhecida como Messier 99 (M99).

© ESO/PHANGS (NGC 4254)

Trata-se de um exemplo de uma galáxia, com braços em espiral bem definidos e proeminentes que se entrelaçam claramente em torno do seu centro. A M99 situa-se a 49 milhões de anos-luz de distância da Terra, na constelação da Cabeleira de Berenice. 

Podemos vê-la nesta imagem com um detalhe extraordinário obtido com o instrumento MUSE (Multi-Unit Spectroscopic Explorer) montado no Very Large Telescope (VLT) do ESO. A imagem mostra uma combinação de observações realizadas em diferentes cores, ou comprimentos de onda da luz, onde se veem nuvens e gás ionizado por estrelas recém-nascidas. Os gases de hidrogênio, oxigênio e enxofre estão em vermelho, azul e laranja, respectivamente. 

Esta imagem foi obtida como parte do projeto PHANGS (Physics at High Angular resolution in Nearby GalaxieS), que observa galáxias próximas em alta resolução ao longo de todo o espectro electromagnético com o objetivo de compreender o ciclo de vida da formação estelar nas galáxias.

Fonte: ESO

quinta-feira, 10 de março de 2022

Tentativa de replicar a “alvorada cósmica”

A primeira grande tentativa de replicar a evidência impactante da “alvorada cósmica” – o aparecimento das primeiras estrelas do Universo 180 milhões de anos após o Big Bang – deixou o cenário confuso.

© N. R. Fuller (ilustração de algumas das primeiras estrelas do Universo)

Quatro anos depois que radioastrônomos relataram ter encontrado um sinal da alvorada cósmica, o radioastrônomo Ravi Subrahmanyan e seus colaboradores descrevem como fizeram uma antena flutuar em um represa no rio Sharavati, no estado indiano de Karnataka, em busca desse sinal.

Os resultados originais causaram alvoroço nos círculos de cosmologia, pois eram os primeiros a afirmar que descobriram sinais da alvorada cósmica. A luz das estrelas mais antigas no Universo Observável teve que viajar quase 14 bilhões de anos para alcançar a Terra. Assim, até agora, ela é muito fraca para ser vista diretamente com telescópios comuns.

Mas radioastrônomos buscam por um efeito indireto usando o espectro de ondas de rádio. A luz ultravioleta das primeiras estrelas deve ter deixado o hidrogênio interestelar, normalmente transparente na maior parte do espectro eletromagnético, levemente opaco em um comprimento de onda de rádio específico. Em 2018, astrônomos relataram ter visto uma queda no espectro de rádio primordial, centrada numa frequência de cerca de 78 MHz. Em seguida, a equipe acreditou tratar-se de evidência da alvorada cósmica. 

Os pesquisadores usaram um instrumento com o formato de uma mesa de centro no outback australiano, chamado Experiment to Detect the Global EoR Signature (EDGES). Mas o sinal do EDGES parecia ser bom demais para ser verdade. A queda no espectro era mais profunda e larga do que as teorias cosmológicas previam. Para explicar o tamanho deste sinal, físicos teóricos propuseram uma gama de mecânicas exóticas, como a presença de partículas elementares anteriormente desconhecidas, com cargas elétricas milhares de vezes menores que a de um elétron. Diversos outros pesquisadores mostraram-se preocupados, enfatizando a dificuldade de encontrar a assinatura de rádio da alvorada cósmica. 

As ondas de rádio do Universo jovem são “afogadas” pela cacofonia de ruído produzida por fontes pela galáxia, que são milhares de vezes mais intensas. Para subtrair o espectro galáctico corretamente, pesquisadores têm de calcular com precisão a maneira como seu instrumento e o ambiente ao redor respondem a diversos comprimentos de onda de rádio, também conhecido como “sistemática” do experimento. Por exemplo, a equipe do EDGES modelou os efeitos causados pelo solo do deserto no Observatório de Radioastronomia de Murchison, no oeste da Austrália, e passou dois anos revisando os dados antes de publicá-los. Mas alguns cientistas ainda não estavam convencidos. Desde então, diversos experimentos competidores vêm tentando checar as descobertas do EDGES. 

Em uma tentativa de escapar da confusão gerada pela interferência de frequências de rádio de atividades humanas, em particular de estações de rádio FM, as equipes montam antenas em algumas das regiões mais remotas da Terra. Subrahmanyan optou pela abordagem inovadora de ir sobre as águas de lagos na Índia para fazer flutuar seu instrumento, chamado Shaped Antenna Measurement of the Background Radio Spectrum (SARAS). A SARAS 3 tinha um formato cônico com o objetivo de facilitar o cálculo de sua resposta a ondas de rádio, e a água abaixo significa que a equipe não precisou lidar com a estrutura incerta ou com as propriedades de rádio do terreno. Subrahmanyan afirma que os resultados da SARAS 3 eliminam a detecção de sinais da alvorada cósmica do EDGES.

Mas o astrônomo Judd Bowman, da Universidade do Estado do Arizona, não está convencido que a SARAS 3 eliminou os resultados de sua equipe. “Esses são instrumentos desafiadores e muitos dos problemas sistemáticos que podem afetar o EDGES também podem ocorrer para a SARAS 3”, afirma Bowman. 

Subrahmanyan está começando um novo experimento no CSIRO, e seu antigo colaborador em Raman, o cosmólogo experimental Saurabh Singh, irá continuar os testes em uma nova antena SARAS. Singh também está participando de uma proposta na Indian Space Research Organisation para uma espaçonave que poderia escapar da interferência na frequência de rádio da Terra ao conduzir medições no lado distante da Lua. Qualquer que seja o destino das observações do EDGES, Singh afirma que a equipe por trás delas merece crédito por reaver o interesse na alvorada cósmica.

Um artigo foi publicado na revista Nature.

Fonte: Scientific American

terça-feira, 8 de março de 2022

A maior molécula encontrada até hoje num disco de formação planetária

Pesquisadoras do Observatório de Leiden, na Holanda, detectaram pela primeira vez éter dimetílico num disco de formação planetária.

© ESO/L. Calçada (grãos de poeira formando corpos celestes)

Com nove átomos, esta é a maior molécula identificada até hoje num disco deste tipo. Esta é também a precursora de moléculas orgânicas maiores que podem levar ao surgimento da vida. O éter dimetílico é uma molécula orgânica observada frequentemente em nuvens de formação estelar, mas nunca tinha sido antes encontrada num disco de formação planetária. As pesquisadoras obtiveram igualmente uma possível detecção de metanoato de metila, uma molécula complexa semelhante ao éter dimetílico que também é um bloco constituinte de moléculas orgânicas maiores. 

As moléculas foram encontradas no disco de formação planetária que circunda a estrela jovem IRS 48 (também conhecida por Oph-IRS 48) com o auxílio do Atacama Large Millimeter/submillimeter Array (ALMA), no Chile. A IRS 48, localizada a 444 anos-luz de distância na constelação de Ofiúco, tem sido objeto de vários estudos porque seu disco contém uma “armadilha de poeira” assimétrica em forma de castanha de caju. 

Esta região, que se formou muito provavelmente como resultado de um planeta recém nascido ou de uma pequena estrela companheira localizada entre a estrela e a armadilha de poeira, retém um grande número de grãos de poeira do tamanho de milímetros que se podem se juntar para formar objetos do tamanho de quilômetros, tais como cometas, asteroides e, potencialmente, até planetas. 

Acredita-se que muitas moléculas orgânicas complexas, tais como o éter dimetílico, surjam em nuvens de formação estelar, antes ainda das próprias estrelas se formarem. Nesses ambientes frios, átomos e moléculas simples como o monóxido de carbono aderem aos grãos de poeira, formando uma camada de gelo e sofrendo reações químicas, que resultam em moléculas mais complexas.

As pesquisadoras descobriram recentemente que a armadilha de poeira no disco da IRS 48 é também um reservatório gelado que contém grãos de poeira cobertos por esse gelo rico em moléculas complexas. Foi nesta região do disco que o ALMA encontrou agora sinais da molécula de éter dimetílico: quando o calor da IRS 48 sublima o gelo em gás, as moléculas prisioneiras que vieram das nuvens frias, libertam-se e podem assim ser detectadas.

© ALMA (moléculas no disco que rodeia a estrela IRS 48)

A descoberta de éter dimetílico sugere que muitas outras moléculas complexas, que são normalmente detectadas em regiões de formação estelar, poderão estar também presentes em estruturas geladas em discos de formação planetária. Estas moléculas são precursoras de moléculas prebióticas tais como aminoácidos e açucares, que são alguns dos blocos constituintes básicos da vida. 

Ao estudar a sua formação e evolução é possível obter uma melhor compreensão de como as moléculas prebióticas acabam nos planetas, incluindo o nosso. Estudos futuros da IRS 48 com o Extremely Large Telescope (ELT) do ESO, atualmente em construção no Chile e previsto para começar as suas operações no final desta década, permitirão à equipe estudar a química das regiões mais internas do disco, onde planetas como a Terra podem estar se formando.

Esta pesquisa foi apresentada no artigo intitulado "A major asymmetric ice trap in a planet-forming disk: III. First detection of dimethyl ether" publicado no periódico Astronomy and Astrophysics. Esta publicação apresenta pesquisas realizadas por seis pesquisadoras e foi lançada no Dia Internacional da Mulher 2022.

Fonte: ESO

Algo novo no céu

A cerca de 500 milhões de anos-luz de distância, na constelação do Escultor, encontra-se uma galáxia de aparência bastante peculiar, conhecida como a galáxia Cartwheel (Roda de Carro).

© VLT/NTT (surgimento da supernova na galáxia Cartwheel)

Esta galáxia era uma galáxia normal até ter sofrido uma interação frontal com uma galáxia companheira menor há vários milhões de anos, o que lhe deu esta aparência tão característica de roda de carro. 

No entanto, há ainda outras coisas curiosas relativas a este objeto. Algo interessante está acontecendo no canto inferior esquerdo da imagem direita, captada em dezembro de 2021 com o New Technology Telescope (NTT) do ESO: uma supernova. A imagem da esquerda, obtida em agosto de 2014 com o instrumento MUSE (Multi Unit Spectroscopic Explorer) montado no Very Large Telescope (VLT) do ESO, mostra a galáxia antes da ocorrência desta supernova. 

Este evento, chamado SN2021afdx, é uma supernova do tipo II, que ocorre quando uma estrela massiva chega ao final da sua evolução. As supernovas podem fazer com que uma estrela brilhe mais intensamente do que a sua galáxia hospedeira inteira e pode ser vista pelos observadores durante meses, ou até anos, um piscar de olhos em escalas de tempo astronômicas. 

As supernovas são uma das razões pelas quais os astrônomos dizem que somos todos feitos de poeira de estrelas: este fenômeno libera para o espaço circundante elementos pesados forjados pela estrela progenitora, que podem mais tarde fazer parte de outras gerações de estrelas, dos planetas que as orbitam e da vida que possa existir nestes planetas.

Para detectar e estudar estes eventos imprevisíveis é necessária colaboração internacional. A SN2021afdx foi observada pela primeira vez em novembro de 2021 durante o rastreio ATLAS, tendo sido posteriormente seguida pelo ePESSTO+ (Public ESO Spectroscopic Survey for Transient Objects), o rastreio espectroscópico público avançado do ESO para objetos transientes. O ePESSTO+ foi concebido para estudar objetos que apareçam no céu noturno por períodos de tempo muito curtos, tais como esta supernova. Este rastreio faz uso dos instrumentos EFOSC2 e SOFI montados no NTT, no Observatório de La Silla do ESO, no Chile. O EFOSC2 obteve não apenas esta bela imagem, como também espectros que permitiram à equipe PESSTO identificar este evento como uma supernova do tipo II.

Fonte: ESO

segunda-feira, 7 de março de 2022

Um jato captado pelo Hubble

Uma explosão energética de uma estrela infantil atravessa esta imagem do telescópio espacial Hubble.

© Hubble (HH34)

Esta exalação estelar, que foi produzida por uma estrela extremamente jovem na fase inicial de formação, consiste em um jato incandescente de gás viajando em velocidades supersônicas. À medida que o jato colide com o material ao redor da estrela ainda em formação, o choque aquece este material e faz com que ele brilhe. O resultado são as estruturas coloridas e finas, denominadas objetos Herbig-Haro, ondulando no canto inferior esquerdo desta imagem. 

Os objetos Herbig-Haro parecem evoluir e mudar significativamente em apenas alguns anos. Este objeto em particular, chamado HH34, foi anteriormente captado pelo Hubble entre 1994 e 2007, e novamente em detalhes gloriosos em 2015, veja o blog Explosão artística de uma jovem estrela

O HH34 reside a aproximadamente 1.250 anos-luz da Terra na Nebulosa de Órion, uma grande região de formação estelar visível a olho nu. A Nebulosa de Órion é um dos locais mais próximos de formação estelar generalizada da Terra e, como tal, tem sido examinada por astrônomos em busca de informações sobre como as estrelas e os sistemas planetários nascem. 

Os dados nesta imagem são de um conjunto de observações do Hubble de quatro jatos brilhantes próximos com a Wide Field Camera 3 tirada para ajudar a pavimentar o caminho para a ciência futura com o telescópio espacial James Webb, que observará em comprimentos de onda predominantemente infravermelhos, e será capaz de perscrutar os envelopes empoeirados que cercam protoestrelas ainda em formação, revolucionando o estudo de jatos destas estrelas jovens. 

Fonte: ESA

domingo, 6 de março de 2022

Sistema não contém nenhum buraco negro

Em 2020 uma equipe liderada por astrônomos do Observatório Europeu do Sul (ESO) anunciou a descoberta do buraco negro mais próximo da Terra, situado a apenas 1.000 anos-luz de distância no sistema HR 6819.

© ESO/L. Calçada (ilustração do sistema HR 6819)

No entanto, estes resultados foram contestados por outros grupos de pesquisadores, entre eles uma equipe internacional sediada na KU Leuven, Bélgica. As duas equipes uniram-se para anunciar que, de fato, não existe nenhum buraco negro em HR 6819, que é, em vez disso, um sistema “vampiro” de duas estrelas num estágio raro e de curta duração da sua evolução.

O estudo original de HR 6819 recebeu especial atenção por parte tanto da imprensa como dos cientistas. Thomas Rivinius, astrônomo do ESO no Chile e autor principal do artigo na época, não ficou surpreendido com a reação da comunidade astronômica à sua descoberta do buraco negro. Rivinius e colegas estavam convencidos que a melhor explicação para os dados que tinham obtido, com o telescópio MPG/ESO de 2,2 metros, era que HR 6819 fosse um sistema triplo, com uma estrela orbitando um buraco negro a cada 40 dias e uma segunda estrela numa órbita muito mais afastada. 

No entanto, um estudo liderado por Julia Bodensteiner, enquanto estudante de doutoramento na KU Leuven, Bélgica, propôs uma explicação diferente para os mesmos dados: HR 6819 podia ser também um sistema com apenas duas estrelas numa órbita de 40 dias e sem nenhum buraco negro. Este cenário alternativo necessitaria que uma das estrelas estivesse “despida”, ou seja, que numa fase anterior, tivesse perdido uma enorme fração da sua massa para a outra estrela.

Para resolver este mistério, as duas equipes trabalharam em conjunto no sentido de obterem dados mais nítidos de HR 6819, usando para isso o Very Large Telescope (VLT) do ESO e o Interferômetro do VLT (VLTI). Para distinguir entre as duas hipóteses, os astrônomos usaram os instrumentos GRAVITY, montado no VLTI, e MUSE (Multi Unit Spectroscopic Explorer), do VLT do ESO. O MUSE confirmou que não existe nenhuma companheira brilhante numa órbita mais afastada, enquanto a resolução espacial do GRAVITY foi capaz de distinguir duas fontes brilhantes separadas por apenas um terço da distância entre a Terra e o Sol. Assim, estes dados permitiram concluir que HR 6819 é um sistema sem buraco negro. E ao mesmo tempo que a estrela dadora se viu “despida” de algum do seu material, a estrela receptora começou a girar mais rapidamente. 

A nova equipe conjunta recém-formada, Leuven-ESO, planeja agora monitorar mais de perto o sistema HR 6819 com o auxílio do instrumento GRAVITY do VLTI. Os pesquisadores irão explorar um estudo conjunto do sistema ao longo do tempo para compreender melhor a sua evolução, analisar suas propriedades e usar este conhecimento para aprender mais sobre outros sistemas binários.

Este trabalho foi descrito num artigo científico intitulado “HR 6819 is a binary system with no black hole: Revisiting the source with infrared interferometry and optical integral field spectroscopy” publicado na revista da especialidade Astronomy & Astrophysics.

Fonte: ESO