Brilhando intensamente a cerca de 160.000 anos-luz de distância da Terra, a Nebulosa da Tarântula é a estrutura mais impressionante da Grande Nuvem de Magalhães, uma galáxia satélite da nossa Via Láctea.
© ESO/VST (região em torno da Nebulosa da Tarântula)
O telescópio de rastreio VLT Survey Telescope (VST), instalado no Observatório do Paranal do ESO, no Chile, observou esta região e os seus arredores ricos com extremo detalhe, revelando uma paisagem cósmica de aglomerados de estrelas, nuvens de gás brilhante e restos espalhados de explosões de supernovas. Trata-se da imagem mais nítida obtida até hoje de toda a região.
Aproveitando as capacidades do VST, astrônomos captaram esta nova imagem muito detalhada da Nebulosa da Tarântula e dos seus numerosos aglomerados estelares e nebulosas vizinhas. A Tarântula, também conhecida por 30 Doradus, é a região de formação estelar mais brilhante e energética do Grupo Local de galáxias.
A Nebulosa da Tarântula, no alto da imagem, tem uma dimensão de mais de 1.000 anos-luz e situa-se na direção da constelação do Dourado, no céu austral. Esta bela nebulosa faz parte da Grande Nuvem de Magalhães, uma galáxia anã com 14.000 anos-luz de dimensão. A Grande Nuvem de Magalhães é a terceira galáxia mais próxima da Via Láctea, depois da Galáxia Elíptica Anã de Sagitário e da Galáxia Anã de Cão Maior.
No núcleo da Nebulosa da Tarântula situa-se um jovem aglomerado estelar gigante chamado NGC 2070, uma região com formação explosiva de estrelas cujo núcleo denso, R136, contém algumas das estrelas mais massivas e luminosas que se conhecem. O intenso brilho da Nebulosa da Tarântula foi inicialmente observado e anotado pelo astrônomo francês Nicolas-Louis de Lacaille em 1751.
Outro aglomerado estelar na Nebulosa da Tarântula é o muito mais antigo Hodge 301, no qual se estima que pelo menos 40 estrelas tenham explodido sob a forma de supernovas, liberando gás para a região. Outro exemplo de um resto de supernova é a superbolha SNR N157B, que envolve o aglomerado estelar aberto NGC 2060. Este aglomerado foi inicialmente observado pelo astrônomo britânico John Herschel em 1836, usando um telescópio refletor de 18,6 polegadas no Cabo da Boa Esperança, África do Sul. Na periferia da Nebulosa da Tarântula, embaixo à direita, podemos ver a localização da famosa supernova SN 1987A. A SN 1987A foi a primeira supernova a ser observada com telescópios modernos desde a Estrela de Kepler de 1604. A SN 1987A brilhou intensamente com o poder de 100 milhões de sóis durante vários meses após a sua descoberta em 23 de Fevereiro de 1987.
Deslocando-nos para o lado esquerda da Nebulosa da Tarântula, podemos ver ainda o brilhante aglomerado estelar aberto chamado NGC 2100, que mostra uma concentração brilhante de estrelas azuis rodeadas por estrelas vermelhas. Este aglomerado foi descoberto pelo astrônomo escocês James Dunlop em 1826, quando trabalhava na Austrália, usando um telescópio refletor de 23 cm construído por ele próprio.
No centro da imagem encontra-se o aglomerado estelar e nebulosa de emissão NGC 2074, outra região de formação de estrelas massivas descoberta por John Herschel. Olhando com mais atenção, podemos observar uma estrutura escura de poeira com uma forma semelhante a um cavalo marinho, o “Cavalo Marinho da Grande Nuvem de Magalhães”. Esta gigantesca estrutura em forma de pilar tem cerca de 20 anos-luz de dimensão, quase cinco vezes a distância entre o Sol e a sua estrela mais próxima, Alfa Centauri. Esta estrutura está condenada a desaparecer nos próximos milhões de anos, já que, à medida que mais estrelas se formam no aglomerado, a sua luz e ventos vão varrendo lentamente os pilares de poeira.
A obtenção desta imagem foi possível graças à câmera especial de 256 milhões de pixels do VST, a OmegaCAM. A imagem foi criada a partir de dados obtidos por esta câmera através de quatro filtros de cor diferentes, incluindo um concebido para isolar o brilho vermelho do hidrogênio ionizado.
A linha de emissão de H-alfa é uma linha espectral vermelha que se forma quando o elétron no interior do átomo de hidrogênio perde energia. Este fenômeno ocorre no hidrogênio ao redor de estrelas quentes jovens, quando este gás se ioniza por efeito da intensa radiação ultravioleta e subsequentemente os elétrons se recombinam com os prótons para formar novamente átomos. A capacidade da OmegaCAM em detectar esta linha espectral permite aos astrônomos caracterizar a física de nuvens moleculares gigantes onde se formam novas estrelas e planetas.
Fonte: ESO
Nenhum comentário:
Postar um comentário