Com o auxílio do Atacama Large Millimeter/submillimeter Array (ALMA) e de outras instalações, a Colaboração Event Horizon Telescope (EHT) executou observações de teste com a mais alta resolução alguma vez obtida a partir da superfície da Terra.
© ESO/M. Kornmesser (ilustração das detecções de maior resolução)
Já houve observações astronômicas com maior resolução da galáxia OJ 287, mas obtidas através da combinação de sinais captados por telescópios no solo com um telescópio no espaço. As novas observações publicadas hoje são as de mais alta resolução obtidas utilizando apenas telescópios terrestres.
Isto foi possível porque se detectou a radiação emitida por galáxias distantes a uma frequência de cerca de 345 GHz, o equivalente a um comprimento de onda de 0,87 mm. A Colaboração EHT estima que, no futuro, será capaz de obter imagens de buracos negros 50% mais pormenorizadas do que o que era possível até agora, tornando mais nítida a região imediatamente a seguir aos limites dos buracos negros supermassivos mais próximos. Será também possível obter imagens de mais buracos negros dos que os observados até agora.
A Colaboração EHT divulgou imagens de M87*, o buraco negro supermassivo situado no centro da galáxia M87, em 2019, e de Sgr A*, o buraco negro que se encontra no coração da nossa Galáxia, a Via Láctea, em 2022. Estas imagens foram obtidas através da ligação de vários observatórios rádio em todo o planeta, utilizando uma técnica chamada interferometria de linha de base muito longa (VLBI), para criar um único telescópio virtual do “tamanho da Terra”.
Para obter imagens de maior resolução, os astrônomos recorrem, normalmente, a telescópios maiores ou a uma maior separação entre os observatórios que fazem parte do interferômetro. No entanto, como o EHT já é do tamanho da Terra, foi necessário utilizar uma abordagem diferente para aumentar a resolução das observações. Outra forma de aumentar a resolução de um telescópio consiste em observar a radiação emitida pelos objetos astronômicos num comprimento de onda mais curto. Foi isso mesmo que a Colaboração EHT fez.
Com o EHT, foram obtidas as primeiras imagens de buracos negros a partir de observações realizadas no comprimento de onda de 1,3 mm, no entanto o anel brilhante visto, formado pela curvatura da luz devido à gravidade do buraco negro, ainda estava desfocado porque estava no limite absoluto da nitidez das imagens. A 0,87 mm, as imagens apresentam-se mais nítidas e detalhadas, o que, por sua vez, irá provavelmente revelar novas propriedades destes objetos, tanto as que foram previamente previstas como outras que provavelmente não o foram.
Em vez de ser utilizado o conjunto completo do EHT, os pesquisadores empregaram dois subconjuntos menores, ambos incluindo o ALMA e o Atacama Pathfinder EXperiment (APEX), situados no deserto do Atacama, no Chile. Outras infraestruturas utilizadas incluem o telescópio IRAM de 30 metros na Espanha, o NOrthern Extended Millimeter Array (NOEMA) na França, o Ttlescópio da Groenlândia e o Submillimeter Array no Havaí.
Nesta experiência piloto, a Colaboração EHT conseguiu obter observações com uma resolução de 19 microssegundos de arco, o que corresponde à resolução mais elevada alguma vez obtida a partir da superfície da Terra. No entanto, não foram criadas imagens já que, apesar de terem sido realizadas detecções robustas da radiação emitida por várias galáxias distantes, não foram utilizadas antenas suficientes para se poder reconstruir com precisão uma imagem a partir dos dados coletados.
Este teste técnico abriu uma nova janela para o estudo dos buracos negros. Com o conjunto completo, o EHT poderá observar detalhes tão pequenos como 13 microssegundos de arco, o equivalente a ver uma moeda na Lua a partir da Terra. Isto significa que a 0,87 mm será possível obter imagens com uma resolução de cerca de 50% superior à das imagens de 1,3 mm de M87* e SgrA* anteriormente publicadas. Para além disso, será provavelmente possível observar buracos negros mais distantes, menores e mais tênues do que os dois que já foram observados até agora.
Esta é a primeira vez que a técnica VLBI foi utilizada com sucesso em 0,87 mm. Embora a capacidade de observar o céu noturno a 0,87 mm já existisse antes destas novas detecções, a utilização da técnica VLBI neste comprimento de onda sempre apresentou desafios que exigiram tempo e avanços tecnológicos para serem ultrapassados. Por exemplo, o vapor de água na atmosfera absorve muito mais as ondas eletromagnéticas a 0,87 mm do que a 1,3 mm, dificultando a tarefa dos radiotelescópios de coletar sinais de buracos negros no comprimento de onda mais curto. Combinando este fato com a turbulência atmosférica cada vez mais pronunciada e a acumulação de ruído em comprimentos de onda mais curtos, assim como a incapacidade de controlar as condições meteorológicas globais durante observações atmosféricas sensíveis, o progresso do VLBI para os comprimentos de onda mais curtos, especialmente aqueles que passam para o submilimétrico, tem sido lento.
Um artigo foi publicado no periódico The Astronomical Journal.
Fonte: ESO
Nenhum comentário:
Postar um comentário